
Building an Analytical Notebook in Python

December 8, 2024

1 Predicting Student Enrollment on Udemy
Module: MSIN0143 Programming for Business Analytics

Group Name: P4BA K2 Word Count: 2000/2000 Words

Student Name Student ID
Azizah Fathiyah Din 24110665
Jiayi He 23226255
Pratham Shaileshkumar Kamble 24150659
Ruhani Sehgal 24204715

1

2 Table of Contents
• Introduction

– Problem Statement
– Objective
– Data

∗ Importing Libraries
∗ Importing Dataset

• Data Preparation
– Finding Missing Values
– Cleaning Variable
– Outlier Analysis

∗ Handling Outliers
– Feature-Engineering

∗ Encoding Category, Language, and Course Instructional (Difficulty) Level
• Exploratory Data Analysis

– Descriptive Analysis
– Correlation Studies and Feature Selection

• Models
– Model Selection and Training
– Limitations

• Conclusion and Business Recommendations
– Business-Recommendations
– Next Steps
– Conclusion

• References
• Appendices

– Gen-AI Usage
– Attribution Contribution
– Trello Images
– Other Models

3 Introduction
3.1 Problem Statement
The education sector has undergone a significant shift in recent years, with e-learning platforms
emerging as one of the most notable transformations, a change accelerated by the COVID-19 pan-
demic. These platforms have made education more accessible to a diverse range of individuals,
from busy office workers and low-income groups to students seeking supplementary materials. To-
day, e-learning has become a central component of the educational ecosystem, attracting numerous
players to the industry. Among them is Udemy, a leading platform founded in 2010 that offers ac-
cess to over 250,000 courses. Platforms like Udemy benefit from indirect network effects, where the
value of the platform increases as more users join, which in turn attracts more instructors, further
enhancing the platform’s value. In Udemy’s case, the two key groups are users and instructors. To
strengthen its position in the industry, Udemy must continue to attract more instructors to create
courses. To support this goal, we have developed a predictive model that estimates the number of
students likely to enroll in a course an instructor wants to offer based on the course and instruc-

2

tors’ characteristics. The ultimate objective of this analysis is to create a more transparent and
encouraging environment for Udemy instructors, fostering growth on the platform and optimizing
revenue.

3.2 Objective
The objective of this report is to identify the factors that predict the number of students likely to
enrol in courses offered by Udemy instructors, enabling instructors to analyse trends and identify
opportunities. Our analysis focuses specifically on data and business analytics courses, as they are
highly relevant in today’s market. Narrowing the scope to these courses also makes the analysis
and model development more manageable.

The report begins with data cleaning and processing to ensure the accuracy and quality of the data.
We then explore and analyse the relevant features before developing several predictive models to
estimate student enrollment based on these factors. Finally, we present the model that performs
best, along with actionable business recommendations.

3.3 Data
The data was collected on November 3rd, 2024, using Webscraper.io, a tool for extracting structured
data from websites. It was configured to capture relevant course and instructor information from
Udemy’s listings.

We focused our web scraping efforts on a curated selection of topics to ensure relevance and man-
ageability. The targeted topics included:

Table 1. Scraped topics

machine-learning web-development python
data-science unity c-sharp
artificial-intelligence google-flutter javascript
data-analysis sql java
generative-ai microsoft-power-bi c-plus-plus
business-intelligence unreal-engine angular
business-analytics game-development css
deep-learning docker react
data-modeling tableau dax
business-analysis

During the data collection process, we encountered several challenges that impacted data accuracy
and completeness. Network errors and missing values were sometimes observed, likely due to issues
capturing JavaScript-rendered content. Additionally, Webscraper.io offers features such as request
intervals and page load delays, which we optimized to control the scraper’s operation. Despite our
efforts to fine-tune these settings for optimal data extraction, some content occasionally did not
load within the specified time frame, resulting in skipped data.

Importing Libraries
[1]: %%capture

!pip install plotly

3

!pip install missingno
!pip install statsmodels

[2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
import re

Importing Dataset
[3]: # Load the CSV file

file_path = "https://www.dropbox.com/scl/fi/t8wo7bkxe0v5e5pvre0r5/
↪courses_latest_scrape.csv?rlkey=r6yqrxfeklhiz9nlyq9mkcncj&st=04ooqy4o&dl=1"

df = pd.read_csv(file_path)

[4]: # to change display format of floats and not use scientific notation if a␣
↪feature contains very large number

pd.options.display.float_format = '{:,.2f}'.format

[5]: df.head()

[5]: web-scraper-order web-scraper-start-url \
0 1730671154-1 https://www.udemy.com/topic/dax/?p=5
1 1730671154-2 https://www.udemy.com/topic/dax/?p=5
2 1730671154-3 https://www.udemy.com/topic/dax/?p=5
3 1730671158-4 https://www.udemy.com/topic/dax/?p=4
4 1730671158-5 https://www.udemy.com/topic/dax/?p=4

course-title course-price \
0 Power BI: Introducción a funciones DAXAprende … NaN
1 DAX-ın təməl anlayışları kursu (Azərbaycan Dil… NaN
2 Linguagem DAX para iniciantesDAXRating: 3.6 ou… NaN
3 ���Microsoft Power BI Desktop - ���� �DAX-"X" … Current price: £29.99
4 ���Microsoft Power BI Desktop- ���� DAX-TABLE … Current price: £22.99

course-rating course-num-of-reviews course-total-hour-length \
0 Rating: 4.6 out of 5 111 reviews 1.5 total hours
1 Rating: 4.4 out of 5 34 reviews 2 total hours
2 Rating: 3.6 out of 5 25 reviews 1 total hour
3 Rating: 4.5 out of 5 235 reviews 3.5 total hours
4 Rating: 3.8 out of 5 202 reviews 3.5 total hours

course-num-of-lectures course-instructional-level \
0 20 lectures Beginner
1 18 lectures Beginner
2 14 lectures Beginner

4

3 22 lectures Beginner
4 29 lectures Beginner

course-short-description … \
0 Aprende lo más importante para comenzar a util… …
1 Kurs vasitəsilə DAX-ın fundamental anlayışları… …
2 DAX …
3 Power BI Desktop������������������������������… …
4 ���Microsoft Power BI Desktop - ���� �DAX-TABL… …

course-link-href course-instructor \
0 https://www.udemy.com/course/power-bi-introduc… José Rafael Escalante
1 https://www.udemy.com/course/dax-n-tml-anlayslar/ Emin Məhərrəmli
2 https://www.udemy.com/course/linguagem-dax/ Clayton Dias Santos
3 https://www.udemy.com/course/masukawa_036/ ���� ���
4 https://www.udemy.com/course/masukawa_038/ ���� ���

course-language course-enrolled-student instructor_rating \
0 Spanish 2,431 students 4.6
1 Azeri 740 students 4.4
2 NaN 238 alunos NaN
3 ��� 1,679����� 4.3
4 ��� 1,425����� 4.3

instructor_reviews_count instructor_students_count instructor_courses_count \
0 116 4,461 NaN
1 34 743 NaN
2 NaN NaN NaN
3 60180 147363 50
4 60180 147363 50

course_languages raw_stat_texts
0 NaN ['4.6 Instructor Rating', '116 Reviews', '4,46…
1 NaN ['4.4 Instructor Rating', '34 Reviews', '743 S…
2 NaN []
3 NaN ['4.3 Instructor Rating', '60,180 Reviews', '1…
4 NaN ['4.3 Instructor Rating', '60,180 Reviews', '1…

[5 rows x 21 columns]

4 Data Preparation
Table 2. The handling of features

5

Feature Information How We Handled It
web-
scraper-
order

Metadata generated by the scraper to
indicate the order of scraping.

Dropped as it was unnecessary for analysis.

web-
scraper-
start-url

Contains the URL from which the
data was scraped, indicating the topic
of the course.

Used to extract the course topic for
categorization.

course-
title

The title of the course, often with
additional information appended.

Dropped, as the course topic from the URL
was sufficient for categorization.

course-
price

Price of the course, often missing or
marked as free; stored as a string.

Converted string values to numeric. Dropped
missing prices

course-
rating

Average course rating, stored as a
string (e.g., “Rating: 4.5 out of 5”).

Extracted numeric rating from the string for
analysis.

course-
num-of-
reviews

Total number of reviews for the
course, stored as a string (e.g., “235
reviews” or “1 review”).

Extracted numeric value and standardized
singular/plural differences.

course-
total-
hour-
length

Duration of the course in hours, stored
as a string (e.g., “3.5 total hours”).

Extracted the numeric value from the string
for analysis.

course-
num-of-
lectures

Number of lectures in the course,
stored as a string (e.g., “22 lectures”).

Extracted numeric value from the string for
analysis.

course-
instructional-
level

The difficulty level of the course (e.g.,
Beginner, Intermediate, etc.).

Kept as-is for analysis, categorized into four
distinct levels.

course-
short-
description

A brief description of the course
content.

Dropped due to limited relevance and
complexity in processing text data within
the project timeline.

course-
link

A URL leading to the course page. Dropped as it was redundant and
unnecessary for the analysis.

course-
link-href

Another URL leading to the course
page.

Dropped as it was redundant.

course-
instructor

Name of the instructor(s) for the
course.

Retained the name of the first listed
instructor, noting the potential bias in
excluding secondary instructors.

course-
language

Language of the course. Retained for analysis as a categorical
variable.

course-
enrolled-
student

Number of students currently enrolled
in the course, stored as a localized
string (e.g., “1,679�����”).

Extracted numeric values.

raw_stat_textsContains instructor-related statistics
(e.g., rating, reviews, students,
courses), often in a single string.

Split into separate columns for each statistic.
Only processed data for the first instructor
listed. Converted strings to nums.

6

4.1 Finding Missing Values

[6]: msno.matrix(df,color=(0.3,0.36,0.44))

[6]: <Axes: >

[7]: # Remove unintended empty columns created by the web scraper
df.drop(['course_languages','instructor_rating','instructor_reviews_count',

'instructor_students_count','instructor_courses_count'],
axis=1,inplace=True)

[8]: # Extract instructor information from a single merged column into four separate␣
↪columns

df[['instructor-rating', 'instructor-reviews', 'instructor-students',
'instructor-courses']] = df['raw_stat_texts'].str.split(', ', expand=True).

↪iloc[:, :4]

[9]: # Excluded from analysis due to lack of contextual relevance in the business␣
↪case

df.drop(['web-scraper-order','course-short-description','course-link',
␣

↪'course-link-href','course-instructor','raw_stat_texts','course-rating',
'course-num-of-reviews'],axis=1,inplace=True)

[10]: # Drop rows with any missing values (NA)
df.dropna(inplace=True)

[11]: df.head(5)

7

[11]: web-scraper-start-url \
3 https://www.udemy.com/topic/dax/?p=4
4 https://www.udemy.com/topic/dax/?p=4
5 https://www.udemy.com/topic/dax/?p=4
6 https://www.udemy.com/topic/dax/?p=4
7 https://www.udemy.com/topic/dax/?p=4

course-title course-price \
3 ���Microsoft Power BI Desktop - ���� �DAX-"X" … Current price: £29.99
4 ���Microsoft Power BI Desktop- ���� DAX-TABLE … Current price: £22.99
5 3/4|DAX Dili Eğitim Videosu SerisiPower BI 'ni… Current price: £19.99
6 ���Microsoft - Excel Power Pivot ���� DAX-"X" … Current price: £22.99
7 Máster en DAX y Power Pivot de la A a la ZAnál… Current price: £19.99

course-total-hour-length course-num-of-lectures course-instructional-level \
3 3.5 total hours 22 lectures Beginner
4 3.5 total hours 29 lectures Beginner
5 5 total hours 59 lectures Intermediate
6 3.5 total hours 22 lectures Beginner
7 24 total hours 156 lectures All Levels

course-language course-enrolled-student instructor-rating \
3 ��� 1,679����� ['4.3 Instructor Rating'
4 ��� 1,425����� ['4.3 Instructor Rating'
5 Türkçe 1.661 öğrenci ['4.4 Instructor Rating'
6 ��� 720����� ['4.3 Instructor Rating'
7 Español 439 estudiantes ['4.4 Instructor Rating'

instructor-reviews instructor-students instructor-courses
3 '60,180 Reviews' '147,363 Students' '50 Courses']
4 '60,180 Reviews' '147,363 Students' '50 Courses']
5 '3,967 Reviews' '60,709 Students' '15 Courses']
6 '60,180 Reviews' '147,363 Students' '50 Courses']
7 '254 Reviews' '1,114 Students' '9 Courses']

[12]: # Columns after cleaning
msno.matrix(df,color=(0.3,0.36,0.44))

[12]: <Axes: >

8

4.2 Cleaning variables

[13]: from util import clean_course_price,clean_num_of_reviews,extract_number

Extract topic name from 'web-scraper-start-url'
df['topic_name'] = df['web-scraper-start-url'].apply(lambda x: x.split('/')[-2]␣

↪if isinstance(x, str) else None)

not needed anymore
df.drop(['web-scraper-start-url'],axis=1,inplace=True)

Convert 'course-total-hour-length' to numeric
Assuming 'course-total-hour-length' might contain text like '1.5 total␣

↪hours', extract the numeric part
df['course-total-hour-length'] = df['course-total-hour-length'].str.

↪extract(r'(\d+\.\d+|\d+)').astype(float)

Convert 'course-num-of-lectures' to integer
Assuming 'course-num-of-lectures' might contain text like '20 lectures',␣

↪extract the numeric part
df['course-num-of-lectures'] = df['course-num-of-lectures'].str.

↪extract(r'(\d+)').astype(int)

Apply the cleaning function to the 'course-price' column
df['course-price'] = df['course-price'].apply(clean_course_price)

Apply the function to the 'course-enrolled-student' column

9

df['course-enrolled-student'] = df['course-enrolled-student'].
↪apply(extract_number)

Extracting the number of courses an instructor has given
df['instructor-courses'] = df['instructor-courses'].str.extract('(\d+)').

↪astype(int)

Extracting the number of students an instructor has
df['instructor-students'] = df['instructor-students'].apply(extract_number).

↪fillna(0).astype(int)

Extracting the number of reviews an instructor received
df['instructor-reviews'] = df['instructor-reviews'].apply(extract_number).

↪fillna(0).astype(int)

Extracting the instructor ratings
df['instructor-rating'] = df['instructor-rating'].str.extract(r'(\d+\.\d+)').

↪astype(float)

df.dropna(inplace=True)

[14]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 8364 entries, 3 to 19414
Data columns (total 12 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 course-title 8364 non-null object
1 course-price 8364 non-null float64
2 course-total-hour-length 8364 non-null float64
3 course-num-of-lectures 8364 non-null int64
4 course-instructional-level 8364 non-null object
5 course-language 8364 non-null object
6 course-enrolled-student 8364 non-null int64
7 instructor-rating 8364 non-null float64
8 instructor-reviews 8364 non-null int64
9 instructor-students 8364 non-null int64
10 instructor-courses 8364 non-null int64
11 topic_name 8364 non-null object
dtypes: float64(3), int64(5), object(4)
memory usage: 849.5+ KB

4.3 Outlier Analysis
Outlier analysis is crucial to data preparation because outliers can skew model performance, leading
to inaccuracies. The original variables had many outliers. For instance, the highest value of
course-enrolled-student is 1,976,468, whereas 50% of this variable’s values ranged from 136 to

10

6,689 students.

[15]: df.describe()

[15]: course-price course-total-hour-length course-num-of-lectures \
count 8,364.00 8,364.00 8,364.00
mean 33.75 11.30 80.07
std 20.41 14.37 96.26
min 19.99 1.00 4.00
25% 19.99 3.00 25.00
50% 29.99 6.50 49.00
75% 39.99 13.50 95.00
max 199.99 197.50 800.00

course-enrolled-student instructor-rating instructor-reviews \
count 8,364.00 8,364.00 8,364.00
mean 12,550.30 4.30 30,484.82
std 57,349.64 0.45 119,090.28
min 0.00 0.00 0.00
25% 136.00 4.20 199.75
50% 1,062.00 4.40 1,625.00
75% 6,689.00 4.50 12,312.00
max 1,976,468.00 5.00 1,221,025.00

instructor-students instructor-courses
count 8,364.00 8,364.00
mean 190,122.15 47.95
std 475,173.46 108.87
min 0.00 1.00
25% 2,682.00 3.00
50% 22,377.00 10.00
75% 134,943.00 31.00
max 4,061,794.00 689.00

We used log transformation and winsorization to adjust for such outliers. For some variables, these
methods still presented many outliers. To handle these values, the capped variables were further
log-transformed.

Handling outliers
[16]: # importing utilities functions

from util import transform_columns,compare_methods_boxplots_separate

[17]: # List of variables to transform
variables_to_transform = [

'course-price',
'course-total-hour-length',
'course-num-of-lectures',
'course-enrolled-student',

11

'instructor-rating',
'instructor-reviews',
'instructor-students',
'instructor-courses'

]

Apply the transform_columns function to all variables
df = transform_columns(df, columns=variables_to_transform, cap_percentile=0.99)

Display the first few rows of the updated DataFrame to verify the changes
df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 8364 entries, 3 to 19414
Data columns (total 36 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 course-title 8364 non-null object
1 course-price 8364 non-null float64
2 course-total-hour-length 8364 non-null float64
3 course-num-of-lectures 8364 non-null int64
4 course-instructional-level 8364 non-null object
5 course-language 8364 non-null object
6 course-enrolled-student 8364 non-null int64
7 instructor-rating 8364 non-null float64
8 instructor-reviews 8364 non-null int64
9 instructor-students 8364 non-null int64
10 instructor-courses 8364 non-null int64
11 topic_name 8364 non-null object
12 course-price_only_capped 8364 non-null float64
13 course-price_only_logged 8364 non-null float64
14 course-price_capped_and_logged 8364 non-null float64
15 course-total-hour-length_only_capped 8364 non-null float64
16 course-total-hour-length_only_logged 8364 non-null float64
17 course-total-hour-length_capped_and_logged 8364 non-null float64
18 course-num-of-lectures_only_capped 8364 non-null float64
19 course-num-of-lectures_only_logged 8364 non-null float64
20 course-num-of-lectures_capped_and_logged 8364 non-null float64
21 course-enrolled-student_only_capped 8364 non-null float64
22 course-enrolled-student_only_logged 8364 non-null float64
23 course-enrolled-student_capped_and_logged 8364 non-null float64
24 instructor-rating_only_capped 8364 non-null float64
25 instructor-rating_only_logged 8364 non-null float64
26 instructor-rating_capped_and_logged 8364 non-null float64
27 instructor-reviews_only_capped 8364 non-null float64
28 instructor-reviews_only_logged 8364 non-null float64
29 instructor-reviews_capped_and_logged 8364 non-null float64
30 instructor-students_only_capped 8364 non-null float64

12

31 instructor-students_only_logged 8364 non-null float64
32 instructor-students_capped_and_logged 8364 non-null float64
33 instructor-courses_only_capped 8364 non-null float64
34 instructor-courses_only_logged 8364 non-null float64
35 instructor-courses_capped_and_logged 8364 non-null float64
dtypes: float64(27), int64(5), object(4)
memory usage: 2.4+ MB

[18]: # Visualizing the variables
log_capped_variables = [

['course-price', 'course-price_only_logged', 'course-price_only_capped',␣
↪'course-price_capped_and_logged'],

['course-total-hour-length', 'course-total-hour-length_only_logged',␣
↪'course-total-hour-length_only_capped',␣
↪'course-total-hour-length_capped_and_logged'],

['instructor-reviews', 'instructor-reviews_only_logged',␣
↪'instructor-reviews_only_capped', 'instructor-reviews_capped_and_logged'],

['course-num-of-lectures', 'course-num-of-lectures_only_logged',␣
↪'course-num-of-lectures_only_capped',␣
↪'course-num-of-lectures_capped_and_logged'],

['course-enrolled-student', 'course-enrolled-student_only_logged',␣
↪'course-enrolled-student_only_capped',␣
↪'course-enrolled-student_capped_and_logged'],

['instructor-courses', 'instructor-courses_only_logged',␣
↪'instructor-courses_only_capped', 'instructor-courses_capped_and_logged'],

['instructor-students', 'instructor-students_only_logged',␣
↪'instructor-students_only_capped', 'instructor-students_capped_and_logged'],

]

Using a function from utility
compare_methods_boxplots_separate(df, log_capped_variables)

13

14

The boxplots above compare the original, log-transformed, capped and log-capped variables. Log
transformation significantly reduced outliers for some variables, whereas capping and then log-
transforming worked better for others. Winsorization was not useful since many outliers persisted.
Thus, for consistency, all variables chosen in the model were capped and log-transformed.

[19]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 8364 entries, 3 to 19414
Data columns (total 36 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 course-title 8364 non-null object
1 course-price 8364 non-null float64
2 course-total-hour-length 8364 non-null float64
3 course-num-of-lectures 8364 non-null int64
4 course-instructional-level 8364 non-null object
5 course-language 8364 non-null object
6 course-enrolled-student 8364 non-null int64
7 instructor-rating 8364 non-null float64
8 instructor-reviews 8364 non-null int64
9 instructor-students 8364 non-null int64
10 instructor-courses 8364 non-null int64
11 topic_name 8364 non-null object
12 course-price_only_capped 8364 non-null float64
13 course-price_only_logged 8364 non-null float64
14 course-price_capped_and_logged 8364 non-null float64
15 course-total-hour-length_only_capped 8364 non-null float64
16 course-total-hour-length_only_logged 8364 non-null float64
17 course-total-hour-length_capped_and_logged 8364 non-null float64
18 course-num-of-lectures_only_capped 8364 non-null float64
19 course-num-of-lectures_only_logged 8364 non-null float64
20 course-num-of-lectures_capped_and_logged 8364 non-null float64
21 course-enrolled-student_only_capped 8364 non-null float64
22 course-enrolled-student_only_logged 8364 non-null float64
23 course-enrolled-student_capped_and_logged 8364 non-null float64
24 instructor-rating_only_capped 8364 non-null float64
25 instructor-rating_only_logged 8364 non-null float64
26 instructor-rating_capped_and_logged 8364 non-null float64
27 instructor-reviews_only_capped 8364 non-null float64
28 instructor-reviews_only_logged 8364 non-null float64
29 instructor-reviews_capped_and_logged 8364 non-null float64
30 instructor-students_only_capped 8364 non-null float64
31 instructor-students_only_logged 8364 non-null float64
32 instructor-students_capped_and_logged 8364 non-null float64
33 instructor-courses_only_capped 8364 non-null float64

15

34 instructor-courses_only_logged 8364 non-null float64
35 instructor-courses_capped_and_logged 8364 non-null float64
dtypes: float64(27), int64(5), object(4)
memory usage: 2.4+ MB

4.4 Feature Engineering
Reducing dimensionality is a critical as it improve computational efficiency and reduce the risk of
overfitting (Murel and Kavlakoglu, 2024). Instead of encoding and treating 28 course topics as
individual features, the dimensions has been reduced from 28 to 3 by grouping all topics into three
broader categories as shown in the Table3.

Table 3. Topics classification

Analytics, AI & ML IT & Software Programming Language
machine-learning web-development python
data-science unity c-sharp
artificial-intelligence google-flutter javascript
data-analysis sql java
generative-ai microsoft-power-bi c-plus-plus
business-intelligence unreal-engine angular
business-analytics game-development css
deep-learning docker react
data-modeling tableau dax
business-analysis

The dataset was obtained by web scraping topic links on the Udemy website. Some courses were
associated with multiple topics, leading to duplicates where the same course appeared under dif-
ferent categories. To address this, we applied one-hot encoding to the course-category column,
creating three dummy variables indicating category membership. For courses spanning multiple
categories, we grouped them by unique titles and aggregated using the max function to ensure
accurate encoding. As a result, courses with multiple topics are identified by having a value of 1
in multiple category dummy variables.

To reduce dimensions, the 36 course languages were simplified into a binary column, is_english,
with English courses labeled as 1 and others as 0. Similarly, instructional levels were encoded into
four categories: All levels, Beginner, Intermediate, and Expert, with 1 indicating membership in
the respective category.

Encoding category, language, and course instructional (difficulty) level
[20]: #Classify topics into categories

analytics_ai_ml = [
"machine-learning", "data-science", "artificial-intelligence",
"data-analysis", "generative-ai", "business-intelligence",
"business-analytics", "business-analysis","deep-learning",
"data-modeling"

]

16

it_software = [
"web-development", "unity", "google-flutter", "sql",
"microsoft-power-bi", "unreal-engine", "game-development",
"docker", "tableau"

]
programming_languages = [

"python", "c-sharp", "javascript", "java",
"c-plus-plus", "angular", "css", "react", "dax"

]

Function to assign categories
def assign_category(topic):

if topic in analytics_ai_ml:
return "Analytics, AI & ML"

elif topic in it_software:
return "IT & Software"

elif topic in programming_languages:
return "Programming Language"

else:
return "Other"

Add the new column based on the topic
df['course-category'] = df['topic_name'].apply(assign_category)
df['course-category'].value_counts()

[20]: Programming Language 3452
IT & Software 2808
Analytics, AI & ML 2104
Name: course-category, dtype: int64

[21]: # Encode categories for each course

Step 1: Perform one-hot encoding on the 'course-category' column
category_dummies = pd.get_dummies(df['course-category'], prefix='category')

Step 2: Combine the encoded categories with the original DataFrame
df_encoded = pd.concat([df, category_dummies], axis=1)

Step 3: Aggregate duplicate rows by course-title
Use max for categories to ensure binary encoding (0/1)
df_encoded = df_encoded.groupby('course-title').agg({

**{col: 'max' for col in category_dummies.columns}, # Take max for␣
↪category columns

**{col: 'first' for col in df.columns if col not in ['course-category',␣
↪'course-title']} # Keep the first value for non-category columns

}).reset_index()

17

Step 4: Ensure all category columns are strictly 0 or 1
category_columns = [col for col in df_encoded.columns if col.

↪startswith('category_')]
df_encoded[category_columns] = df_encoded[category_columns].clip(upper=1).

↪astype(int)

Display the first few rows of the cleaned DataFrame
df_encoded.head()

[21]: course-title \
0 !Unreal Engine 5 ���� ����� ������� ��������� …
1 "E-Justice": How find mistakes of algorithmic …
2 #1 Unity Hyper Casual Cricket Mobile Game usin…
3 (100+ Saat) Aranan Programcı Olma Kamp Kursu| …
4 (120+Saat)Komple Uygulamalı Web Geliştirme Eği…

category_Analytics, AI & ML category_IT & Software \
0 0 1
1 1 0
2 0 1
3 0 0
4 0 1

category_Programming Language course-price course-total-hour-length \
0 0 19.99 12.50
1 0 22.99 1.00
2 0 49.99 12.50
3 1 49.99 104.50
4 0 44.99 123.00

course-num-of-lectures course-instructional-level course-language \
0 31 Beginner Arabic
1 13 All Levels English
2 103 Beginner English
3 659 All Levels Türkçe
4 800 All Levels Türkçe

course-enrolled-student … instructor-rating_capped_and_logged \
0 794 … 1.74
1 32 … 1.69
2 416 … 1.74
3 93791 … 1.72
4 4855 … 1.70

instructor-reviews_only_capped instructor-reviews_only_logged \
0 211.00 5.36
1 197.00 5.29

18

2 1,269.00 7.15
3 56,974.00 10.95
4 11,327.00 9.34

instructor-reviews_capped_and_logged instructor-students_only_capped \
0 5.36 823.00
1 5.29 717.00
2 7.15 7,700.00
3 10.95 266,058.00
4 9.34 67,881.00

instructor-students_only_logged instructor-students_capped_and_logged \
0 6.71 6.71
1 6.58 6.58
2 8.95 8.95
3 12.49 12.49
4 11.13 11.13

instructor-courses_only_capped instructor-courses_only_logged \
0 1.00 0.69
1 12.00 2.56
2 21.00 3.09
3 17.00 2.89
4 21.00 3.09

instructor-courses_capped_and_logged
0 0.69
1 2.56
2 3.09
3 2.89
4 3.09

[5 rows x 39 columns]

[22]: # Check if all value are binary

Step 1: Identify category columns
category_columns = [col for col in df_encoded.columns if col.

↪startswith('category_')]

Step 2: Check if all values in each category column are binary
for column in category_columns:

unique_values = df_encoded[column].unique()
is_binary = set(unique_values).issubset({0, 1})
print(f"Column '{column}' is binary: {is_binary}")
print(f"Unique values in '{column}': {unique_values}")

Column 'category_Analytics, AI & ML' is binary: True

19

Unique values in 'category_Analytics, AI & ML': [0 1]
Column 'category_IT & Software' is binary: True
Unique values in 'category_IT & Software': [1 0]
Column 'category_Programming Language' is binary: True
Unique values in 'category_Programming Language': [0 1]

[23]: ## Check Course with mutiple category

Step 1: Identify category columns
category_columns = [col for col in df_encoded.columns if col.

↪startswith('category_')]

Step 2: Filter rows with multiple categories (sum of category columns > 1)
df_combined = df_encoded[df_encoded[category_columns].sum(axis=1) > 1]

Step 3: Display the rows with combined categories
print("Courses with Combined Categories (e.g., 110, 101, 011, etc.):")
df_combined.head() # Display the first few rows

Courses with Combined Categories (e.g., 110, 101, 011, etc.):

[23]: course-title \
62 16 beginner programming projects: Java, Python…
97 2024 UPDATED - HTML5 Elements & CSS3 Propertie…
146 50+ Web Projects with HTML, CSS, and JavaScrip…
179 A to Z Unity® Development: Code in C# and Make…
500 Angular Material, Universal: A Rapid Guide - A…

category_Analytics, AI & ML category_IT & Software \
62 0 1
97 0 1
146 0 1
179 0 1
500 0 1

category_Programming Language course-price course-total-hour-length \
62 1 29.99 17.00
97 1 44.99 17.50
146 1 54.99 25.00
179 1 24.99 18.50
500 1 34.99 4.50

course-num-of-lectures course-instructional-level course-language \
62 164 Beginner English
97 203 All Levels English
146 101 All Levels English
179 141 Beginner English
500 45 Intermediate English

20

course-enrolled-student … instructor-rating_capped_and_logged \
62 2507 … 1.63
97 2115 … 1.70
146 5412 … 1.72
179 62 … 1.65
500 139 … 1.65

instructor-reviews_only_capped instructor-reviews_only_logged \
62 45,072.00 10.72
97 2,268.00 7.73
146 9,309.00 9.14
179 12,312.00 9.42
500 3,397.00 8.13

instructor-reviews_capped_and_logged instructor-students_only_capped \
62 10.72 783,678.00
97 7.73 12,038.00
146 9.14 72,163.00
179 9.42 387,020.00
500 8.13 29,689.00

instructor-students_only_logged instructor-students_capped_and_logged \
62 13.57 13.57
97 9.40 9.40
146 11.19 11.19
179 12.87 12.87
500 10.30 10.30

instructor-courses_only_capped instructor-courses_only_logged \
62 471.00 6.16
97 7.00 2.08
146 17.00 2.89
179 308.00 5.73
500 84.00 4.44

instructor-courses_capped_and_logged
62 6.16
97 2.08
146 2.89
179 5.73
500 4.44

[5 rows x 39 columns]

[24]: # Resetting the original df

21

df = df_encoded.copy()

df['course-category'] = df['topic_name'].apply(assign_category)

course-language

is_english
[25]: # See number of unique course language

len(df['course-language'].unique())

[25]: 36

[26]: # Encode languages for each course
Splitting into english and non-english

df['is_english'] = (df['course-language'] == 'English').astype(int)

[27]: # Check if 'is_english' column is binary
unique_values = df['is_english'].unique()
is_binary = set(unique_values).issubset({0, 1})

print(f"Column 'is_english' is binary: {is_binary}")
print(f"Unique values in 'is_english': {unique_values}")

Column 'is_english' is binary: True
Unique values in 'is_english': [0 1]

course-instructional-level
[28]: # Create variable

x = df['course-instructional-level']

Perform one-hot encoding
df = pd.get_dummies(df, columns=['course-instructional-level'],␣

↪prefix='course-difficulty',dtype=float)

df['course-instructional-level'] = x

Display the new DataFrame
df[['course-difficulty_All␣

↪Levels','course-difficulty_Beginner','course-difficulty_Expert','course-difficulty_Intermediate','course-instructional-level']].
↪head()

[28]: course-difficulty_All Levels course-difficulty_Beginner \
0 0.00 1.00
1 1.00 0.00
2 0.00 1.00
3 1.00 0.00

22

4 1.00 0.00

course-difficulty_Expert course-difficulty_Intermediate \
0 0.00 0.00
1 0.00 0.00
2 0.00 0.00
3 0.00 0.00
4 0.00 0.00

course-instructional-level
0 Beginner
1 All Levels
2 Beginner
3 All Levels
4 All Levels

[29]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8150 entries, 0 to 8149
Data columns (total 45 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 course-title 8150 non-null object
1 category_Analytics, AI & ML 8150 non-null int64
2 category_IT & Software 8150 non-null int64
3 category_Programming Language 8150 non-null int64
4 course-price 8150 non-null float64
5 course-total-hour-length 8150 non-null float64
6 course-num-of-lectures 8150 non-null int64
7 course-language 8150 non-null object
8 course-enrolled-student 8150 non-null int64
9 instructor-rating 8150 non-null float64
10 instructor-reviews 8150 non-null int64
11 instructor-students 8150 non-null int64
12 instructor-courses 8150 non-null int64
13 topic_name 8150 non-null object
14 course-price_only_capped 8150 non-null float64
15 course-price_only_logged 8150 non-null float64
16 course-price_capped_and_logged 8150 non-null float64
17 course-total-hour-length_only_capped 8150 non-null float64
18 course-total-hour-length_only_logged 8150 non-null float64
19 course-total-hour-length_capped_and_logged 8150 non-null float64
20 course-num-of-lectures_only_capped 8150 non-null float64
21 course-num-of-lectures_only_logged 8150 non-null float64
22 course-num-of-lectures_capped_and_logged 8150 non-null float64
23 course-enrolled-student_only_capped 8150 non-null float64
24 course-enrolled-student_only_logged 8150 non-null float64

23

25 course-enrolled-student_capped_and_logged 8150 non-null float64
26 instructor-rating_only_capped 8150 non-null float64
27 instructor-rating_only_logged 8150 non-null float64
28 instructor-rating_capped_and_logged 8150 non-null float64
29 instructor-reviews_only_capped 8150 non-null float64
30 instructor-reviews_only_logged 8150 non-null float64
31 instructor-reviews_capped_and_logged 8150 non-null float64
32 instructor-students_only_capped 8150 non-null float64
33 instructor-students_only_logged 8150 non-null float64
34 instructor-students_capped_and_logged 8150 non-null float64
35 instructor-courses_only_capped 8150 non-null float64
36 instructor-courses_only_logged 8150 non-null float64
37 instructor-courses_capped_and_logged 8150 non-null float64
38 course-category 8150 non-null object
39 is_english 8150 non-null int64
40 course-difficulty_All Levels 8150 non-null float64
41 course-difficulty_Beginner 8150 non-null float64
42 course-difficulty_Expert 8150 non-null float64
43 course-difficulty_Intermediate 8150 non-null float64
44 course-instructional-level 8150 non-null object
dtypes: float64(31), int64(9), object(5)
memory usage: 2.8+ MB

5 Exploratory Data Analysis (EDA)
5.1 Descriptive Analysis
After preparing the data, the next step involves conducting descriptive and exploratory analyses
to gain insights into the dataset.

[30]: # Selecting the capped features for descriptive statistics
selected_capped_feature = df[['course-enrolled-student_only_capped',

'instructor-courses_only_capped',
'instructor-students_only_capped',
'course-price_only_capped',
'course-total-hour-length_only_capped',
'course-num-of-lectures_only_capped',
'instructor-rating_only_capped',
'instructor-reviews_only_capped']]

[31]: # Transposing it to make the descriptive statistics easier to read
selected_summary = selected_capped_feature.describe().transpose()
print(selected_summary)

count mean std min \
course-enrolled-student_only_capped 8,150.00 9,910.26 28,340.07 0.00
instructor-courses_only_capped 8,150.00 46.82 105.16 1.00
instructor-students_only_capped 8,150.00 182,097.51 438,002.11 0.00

24

course-price_only_capped 8,150.00 33.07 16.80 19.99
course-total-hour-length_only_capped 8,150.00 10.98 12.77 1.00
course-num-of-lectures_only_capped 8,150.00 78.20 88.97 4.00
instructor-rating_only_capped 8,150.00 4.30 0.45 0.00
instructor-reviews_only_capped 8,150.00 27,221.50 95,922.48 0.00

25% 50% 75% \
course-enrolled-student_only_capped 131.00 1,029.00 6,477.00
instructor-courses_only_capped 3.00 10.00 30.00
instructor-students_only_capped 2,646.25 22,026.50 132,051.25
course-price_only_capped 19.99 29.99 39.99
course-total-hour-length_only_capped 3.00 6.00 13.00
course-num-of-lectures_only_capped 25.00 48.00 94.00
instructor-rating_only_capped 4.20 4.40 4.50
instructor-reviews_only_capped 196.00 1,575.00 12,281.00

max
course-enrolled-student_only_capped 216,167.43
instructor-courses_only_capped 626.00
instructor-students_only_capped 2,981,453.00
course-price_only_capped 119.99
course-total-hour-length_only_capped 71.19
course-num-of-lectures_only_capped 517.74
instructor-rating_only_capped 5.00
instructor-reviews_only_capped 763,693.82

The statistics show that courses have 9,910 students enrolled, are priced around £33, and last
about 11 hours on average.

Looking at the instructors’ profiles, they generally offer around 46 courses, reaching an average of
182,097 students in total. Instructors also receive about 27,221 reviews on average and maintain a
rating of 4.3 stars, suggesting a high level of positive feedback from students.

[32]: # Selecting the log-transformed feature for histogram visualization
selected_logged_feature = df[['course-enrolled-student_capped_and_logged',

'course-total-hour-length_capped_and_logged',
'course-num-of-lectures_capped_and_logged',
'instructor-rating_capped_and_logged',
'instructor-reviews_capped_and_logged',
'instructor-students_capped_and_logged',
'instructor-courses_capped_and_logged',
'course-price_capped_and_logged']]

Histograms further clarify the distributions of key variables after they are transformed with log.

[33]: # Create subplots
fig2, axes = plt.subplots(4, 2, figsize=(20, 20)) # 2 rows and 4 columns
axes = axes.flatten() # Flatten to iterate easily

25

Plot a histogram for each column
for i, col in enumerate(selected_logged_feature.columns):

axes[i].hist(selected_logged_feature[col], bins=10, color='skyblue',␣
↪edgecolor='black')

axes[i].set_title(f'Histogram of {col}')
axes[i].set_xlabel(col)
axes[i].set_ylabel('Frequency')

Adjust layout and display
plt.tight_layout() # Prevent overlapping
plt.show()

Histograms further clarify the distributions of key variables after they are transformed with log.

26

The number of students and lectures per course, and instructor reviews follow a roughly normal
distribution. Conversely, the other variables are skewed, especially the instructor rating and course
price distribution.

This skewness might be caused by the data scraping and data cleaning process, which may have
excluded free courses or removed rows with missing values, potentially impacting the overall distri-
bution. The skewness in instructor-students could also display the dominance of popular instructors
in the platform.

The dataset is well-represented across the three main categories, with 3,450 courses in “Program-
ming Language,” 2,808 in “IT & Software,” and 2,104 in “Analytics, AI & ML.” English-language
courses dominated the dataset, with 5,230 marked as is_english. Meanwhile, instructional levels
were distributed across four categories.

[34]: # Summary of categorical variables for topics

Count the occurrences of each category
category_distribution = df['course-category'].value_counts()

Plot the distribution
plt.figure(figsize=(6, 4))
barch = sns.barplot(x=category_distribution.index, y=category_distribution.

↪values,
palette='Blues',hue=category_distribution.index,legend=False)

Add labels to the bars
for i, value in enumerate(category_distribution.values):

barch.text(i, value + 1, # Adjust the y-coordinate for spacing
str(value),
ha='center', va='bottom', fontsize=8)

Customize the plot
plt.title("Distribution of Course Categories", fontsize=12)
plt.xlabel("Course Categories", fontsize=10)
plt.ylabel("Count", fontsize=10)
plt.xticks(rotation=0, ha='center', fontsize=8)
plt.tight_layout()

Show the plot
plt.show()

27

[35]: # Summary of categorical variables for language
num_english_courses = df['is_english'].sum()
print(f"The number of english course in the dataset: {num_english_courses}")

The number of english course in the dataset: 5074

[36]: # Summary of categorical variables for instructional levels

Count the occurrences of each instructional level
instructional_distribution = df['course-instructional-level'].value_counts()

Plot the distribution
plt.figure(figsize=(6, 4))
barch = sns.barplot(x=instructional_distribution.index,␣

↪y=instructional_distribution.values,
palette='Blues',hue=instructional_distribution.index,legend=False)

Add labels to the bars
for i, value in enumerate(instructional_distribution.values):

barch.text(i, value + 1, # Adjust the y-coordinate for spacing
str(value),
ha='center', va='bottom', fontsize=8)

Customize the plot
plt.title("Distribution of Course Instructional Level", fontsize=12)
plt.xlabel("Course Levels", fontsize=10)

28

plt.ylabel("Count", fontsize=10)
plt.xticks(rotation=0, ha='center', fontsize=8)
plt.tight_layout()

Show the plot
plt.show()

5.2 Correlation Studies and Feature Selection
We explored the relationship between relevant independent variables and the dependent variable,
course-enrolled-student_log as shown in Table below.

Table 4. Correlation level table

Correlation
Level Variable

Correlation
Value

Correlation
Type

High Number of students instructor taught 0.66 Positive
High Instructor reviews 0.57 Positive
Moderate Course price 0.35 Positive
Moderate Number of lectures 0.32 Positive
Moderate English language (is_english) 0.29 Positive
Low Total course hours 0.19 Positive
Low Number of courses instructor launched 0.18 Positive
Low Instructor rating 0.14 Positive

29

Correlation
Level Variable

Correlation
Value

Correlation
Type

Low Programming Language category 0.11 Positive
Low Course difficulty (All Levels) 0.11 Positive
Low Course difficulty (Intermediate) -0.03 Negative
Low Analytics, AI & ML category -0.05 Negative
Low Course difficulty (Expert) -0.05 Negative
Low IT & Software category -0.06 Negative
Low Course difficulty (Beginner) -0.07 Negative

In the variable selection, we included all the relevant cleaned variables and dummy variables in
the correlation metrix, especially those with high correlation to number of student enrolled. These
variable add explanatory power to the model, increasing model accuracy. Additionally, variables
like category and difficult-level dummy variables, despite their low correlation, were included for
their contextual value, as they may capture indirect or niche effects on enrollments.

[37]: # These are the variables we decided to use to train our ML models
df_ml = df[['course-enrolled-student_capped_and_logged',

'course-price_capped_and_logged',
'instructor-reviews_capped_and_logged',
'is_english',
'instructor-courses_capped_and_logged',
'instructor-students_capped_and_logged',
'course-num-of-lectures_capped_and_logged',
'instructor-rating_capped_and_logged',
'category_Analytics, AI & ML',
'category_IT & Software',
'category_Programming Language',
'course-difficulty_All Levels',
'course-difficulty_Beginner',
'course-difficulty_Expert',
'course-difficulty_Intermediate',
'course-total-hour-length_capped_and_logged']]

Correlation matrix
corr_matrix = df_ml.corr(numeric_only=True)
corr_matrix["course-enrolled-student_capped_and_logged"].

↪sort_values(ascending=False)

[37]: course-enrolled-student_capped_and_logged 1.00
instructor-students_capped_and_logged 0.66
instructor-reviews_capped_and_logged 0.57
course-price_capped_and_logged 0.34
course-num-of-lectures_capped_and_logged 0.32
is_english 0.29
course-total-hour-length_capped_and_logged 0.19

30

instructor-courses_capped_and_logged 0.18
instructor-rating_capped_and_logged 0.16
category_Programming Language 0.11
course-difficulty_All Levels 0.11
course-difficulty_Intermediate -0.03
category_Analytics, AI & ML -0.05
course-difficulty_Expert -0.05
category_IT & Software -0.06
course-difficulty_Beginner -0.07
Name: course-enrolled-student_capped_and_logged, dtype: float64

6 Models
6.1 Model Selection and Training
The dataset was split into features (X) and target variable (y). We employed k-fold cross-
validation to ensure reliable performance estimation and generalize the model to unseen data by
using different subsets for training and testing.

For the Decision Tree, we used GridSearchCV to identify the optimal hyperparameters, test-
ing values for max_depth, min_samples_split, min_samples_leaf, and max_features. These
settings mitigated overfitting by limiting the tree’s complexity and balancing generalizability with
performance.

For the Random Forest, we used default hyperparameters due to time and computational con-
straints. Despite this, Random Forest outperformed the optimized Decision Tree, highlighting its
robustness.

We evaluated performance using RMSE and R², focusing on the original target scale by reversing
log-transformations applied to predictions. Log-transforming the target helped address skewness
and stabilize predictions, while evaluating on the original scale ensured interpretability. The Ran-
dom Forest model outperforms the Decision Tree across both log-transformed and original
scales. It achieved a higher mean test R² and lower mean test RMSE compared to the De-
cision Tree, demonstrating its superior ability to generalize. Both models significantly improved
over baseline predictions, with Random Forest providing the most robust results. The table below
summarizes the performance metrics for each model.

Table 5. Models performance

Model
Mean Test R²
(Log Scale)

Mean Test
RMSE (Log
Scale)

Mean Test R²
(Original Scale)

Mean Test RMSE
(Original Scale)

Random
Forest

0.6821 ± 0.0187 1.4967 ± 0.0363 0.5154 ± 0.0252 19,633.30 ± 1,274.57

Decision
Tree

0.5899 ± 0.0134 1.7005 ± 0.0195 0.3626 ± 0.0816 22,431.38 ± 1,248.31

Mean
Baseline

— — 0.0000 31,205.18

31

Model
Mean Test R²
(Log Scale)

Mean Test
RMSE (Log
Scale)

Mean Test R²
(Original Scale)

Mean Test RMSE
(Original Scale)

Median
Baseline

— — -0.0982 32,701.18

Other models’ results are in the appendix due to space. Random Forest consistently outperformed
these alternatives, justifying our focus on it as the benchmark model.

[38]: import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, KFold, GridSearchCV
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error, r2_score

Assuming your DataFrame is named 'df_ml' and the target column is␣
↪'course-enrolled-student_log'

Data Preparation
X = df_ml.drop(columns=['course-enrolled-student_capped_and_logged'])
y = df_ml['course-enrolled-student_capped_and_logged']

Optimize Train-Test Split using K-Fold Cross-Validation
kf = KFold(n_splits=5, shuffle=True, random_state=42)

Initialize lists to store metrics
train_r2_list, test_r2_list = [], []
train_rmse_log_list, test_rmse_log_list = [],[]
train_rmse_original_list, test_rmse_original_list = [],[]
r2_original_test_list = []

GridSearchCV for Hyperparameter Tuning
param_grid = {

'max_depth': [None, 5, 10, 20],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
'max_features': [None, 'sqrt', 'log2']

}

for train_index, test_index in kf.split(X):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

dt_regressor = DecisionTreeRegressor(random_state=42)
grid_search = GridSearchCV(

estimator=dt_regressor,

32

param_grid=param_grid,
scoring='neg_mean_squared_error',
cv=5,
verbose=1,
n_jobs=-1

)

grid_search.fit(X_train, y_train)
best_dt = grid_search.best_estimator_
print(f"Best Parameters for fold: {grid_search.best_params_}")

Step 4: Evaluate the model using the best parameters
y_train_pred = best_dt.predict(X_train)
y_test_pred = best_dt.predict(X_test)

Evaluate the model (R² and RMSE on log scale)
train_r2 = best_dt.score(X_train, y_train)
test_r2 = best_dt.score(X_test, y_test)
train_rmse_log = np.sqrt(mean_squared_error(y_train, y_train_pred))
test_rmse_log = np.sqrt(mean_squared_error(y_test, y_test_pred))

Reverse log1p transformation for predictions and actual values
y_train_pred_original = np.expm1(y_train_pred)
y_test_pred_original = np.expm1(y_test_pred)
y_train_original = np.expm1(y_train)
y_test_original = np.expm1(y_test)

Compute RMSE and R² on the original scale
train_rmse_original = np.sqrt(mean_squared_error(y_train_original,␣

↪y_train_pred_original))
test_rmse_original = np.sqrt(mean_squared_error(y_test_original,␣

↪y_test_pred_original))
r2_original_test = r2_score(y_test_original, y_test_pred_original)

Append metrics to lists
train_r2_list.append(train_r2)
test_r2_list.append(test_r2)
train_rmse_log_list.append(train_rmse_log)
test_rmse_log_list.append(test_rmse_log)
train_rmse_original_list.append(train_rmse_original)
test_rmse_original_list.append(test_rmse_original)
r2_original_test_list.append(r2_original_test)

Calculate average metrics over all folds
avg_train_r2 = np.mean(train_r2_list)
avg_test_r2 = np.mean(test_r2_list)
avg_train_rmse_log = np.mean(train_rmse_log_list)

33

avg_test_rmse_log = np.mean(test_rmse_log_list)
avg_train_rmse_original = np.mean(train_rmse_original_list)
avg_test_rmse_original = np.mean(test_rmse_original_list)
avg_r2_original_test = np.mean(r2_original_test_list)

Output results with improved formatting
print("\n### Cross-Validation Results ###\n")

print("Training R² Scores (Log Scale):")
print(f" Individual Scores: {train_r2_list}")
print(f" Mean Training R²: {avg_train_r2:.4f} ± {np.std(train_r2_list):.4f}")

print("\nTest R² Scores (Log Scale):")
print(f" Individual Scores: {test_r2_list}")
print(f" Mean Test R²: {avg_test_r2:.4f} ± {np.std(test_r2_list):.4f}")

print("\nTraining RMSE Scores (Log Scale):")
print(f" Individual Scores: {train_rmse_log_list}")
print(f" Mean Training RMSE (Log Scale): {avg_train_rmse_log:.4f} ± {np.

↪std(train_rmse_log_list):.4f}")

print("\nTest RMSE Scores (Log Scale):")
print(f" Individual Scores: {test_rmse_log_list}")
print(f" Mean Test RMSE (Log Scale): {avg_test_rmse_log:.4f} ± {np.

↪std(test_rmse_log_list):.4f}")

print("\nTraining RMSE Scores (Original Scale):")
print(f" Individual Scores: {train_rmse_original_list}")
print(f" Mean Training RMSE (Original Scale): {avg_train_rmse_original:.4f} ±␣

↪{np.std(train_rmse_original_list):.4f}")

print("\nTest RMSE Scores (Original Scale):")
print(f" Individual Scores: {test_rmse_original_list}")
print(f" Mean Test RMSE (Original Scale): {avg_test_rmse_original:.4f} ± {np.

↪std(test_rmse_original_list):.4f}")

print(f"\nMean Test R² on Original Scale: {avg_r2_original_test:.4f} ± {np.
↪std(r2_original_test_list):.4f}\n")

Step 5: Baseline Comparison
mean_baseline_train_original = np.mean(np.expm1(y_train)) # Back-transform␣

↪log1p
median_baseline_train_original = np.median(np.expm1(y_train)) # Back-transform␣

↪log1p

mean_baseline_test_original = np.mean(np.expm1(y_test)) # Back-transform log1p

34

median_baseline_test_original = np.median(np.expm1(y_test)) # Back-transform␣
↪log1p

y_mean_pred_test = np.full_like(y_test, mean_baseline_test_original) # Predict␣
↪the mean for all test samples

y_median_pred_test = np.full_like(y_test, median_baseline_test_original) #␣
↪Predict the median for all test samples

mean_mse_test_original = mean_squared_error(y_test_original, y_mean_pred_test)
median_mse_test_original = mean_squared_error(y_test_original,␣

↪y_median_pred_test)

mean_rmse_test_original = np.sqrt(mean_mse_test_original) # RMSE for mean␣
↪baseline on test data

median_rmse_test_original = np.sqrt(median_mse_test_original) # RMSE for␣
↪median baseline on test data

mean_r2_test_original = r2_score(y_test_original, y_mean_pred_test)
median_r2_test_original = r2_score(y_test_original, y_median_pred_test)

print("\n### Baseline Comparison on Test Set (Original Scale) ###\n")
print(f"Mean Baseline (Test, Original Scale) - RMSE: {mean_rmse_test_original:.

↪2f}, R²: {mean_r2_test_original:.4f}")
print(f"Median Baseline (Test, Original Scale) - RMSE:␣

↪{median_rmse_test_original:.2f}, R²: {median_r2_test_original:.4f}")

Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best Parameters for fold: {'max_depth': 10, 'max_features': None,
'min_samples_leaf': 4, 'min_samples_split': 10}
Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best Parameters for fold: {'max_depth': 10, 'max_features': None,
'min_samples_leaf': 4, 'min_samples_split': 10}
Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best Parameters for fold: {'max_depth': 5, 'max_features': None,
'min_samples_leaf': 4, 'min_samples_split': 2}
Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best Parameters for fold: {'max_depth': 10, 'max_features': None,
'min_samples_leaf': 4, 'min_samples_split': 10}
Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best Parameters for fold: {'max_depth': 10, 'max_features': None,
'min_samples_leaf': 4, 'min_samples_split': 10}

Cross-Validation Results

Training R² Scores (Log Scale):
Individual Scores: [0.7703030303688535, 0.7640997867343546, 0.59421562718836,

0.7637857632332071, 0.76417746668574]

35

Mean Training R²: 0.7313 ± 0.0686

Test R² Scores (Log Scale):
Individual Scores: [0.5744854137100358, 0.6024737929758478,

0.5845040056533342, 0.5793448155968672, 0.6086795544872204]
Mean Test R²: 0.5899 ± 0.0133

Training RMSE Scores (Log Scale):
Individual Scores: [1.2730700284203738, 1.2896921622971085, 1.694539336661604,

1.296036703519441, 1.2854874528398432]
Mean Training RMSE (Log Scale): 1.3678 ± 0.1636

Test RMSE Scores (Log Scale):
Individual Scores: [1.7355747297388702, 1.6799485102747245, 1.702435743305925,

1.697287049210717, 1.6870653156230488]
Mean Test RMSE (Log Scale): 1.7005 ± 0.0192

Training RMSE Scores (Original Scale):
Individual Scores: [15959.90148828567, 16930.18415063452, 25416.8234371193,

17619.866970967832, 16173.599106233005]
Mean Training RMSE (Original Scale): 18420.0750 ± 3547.2159

Test RMSE Scores (Original Scale):
Individual Scores: [20008.56303593444, 22740.399746284344, 23560.82835577243,

22742.291674757973, 23104.827903079185]
Mean Test RMSE (Original Scale): 22431.3821 ± 1248.3098

Mean Test R² on Original Scale: 0.3626 ± 0.0815

Baseline Comparison on Test Set (Original Scale)

Mean Baseline (Test, Original Scale) - RMSE: 31205.18, R²: 0.0000
Median Baseline (Test, Original Scale) - RMSE: 32701.18, R²: -0.0982

[39]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import learning_curve
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error

Custom Scoring Function
Define a custom scoring function to back-transform the predictions and␣

↪calculate RMSE on the original scale
def rmse_original_scale(estimator, X, y):

36

y_pred_log = estimator.predict(X)
y_pred_original = np.expm1(y_pred_log)
y_original = np.expm1(y)
rmse = np.sqrt(mean_squared_error(y_original, y_pred_original))
return rmse

Learning Curve Calculation
Generate the learning curves
train_sizes, train_scores, test_scores = learning_curve(

best_dt, X, y,
cv=5, # 5-fold cross-validation
scoring=rmse_original_scale, # Custom scoring function
n_jobs=-1, # Use all available cores for computation
train_sizes=np.linspace(0.1, 1.0, 10) # Generate learning curve points␣

↪from 10% to 100% of the training data
)

Calculate the mean and standard deviation of the scores
train_scores_mean = np.mean(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

Plot Learning Curves
plt.figure(figsize=(10, 6))

Plot the mean training error with standard deviation
plt.plot(train_sizes, train_scores_mean, label='Training RMSE (Original␣

↪Scale)', color='r', marker='o')
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,␣

↪train_scores_mean + train_scores_std, alpha=0.2, color='r')

Plot the mean validation error with standard deviation
plt.plot(train_sizes, test_scores_mean, label='Validation RMSE (Original␣

↪Scale)', color='g', marker='o')
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,␣

↪test_scores_mean + test_scores_std, alpha=0.2, color='g')

Add labels and title to the plot
plt.ylabel('Root Mean Squared Error (Original Scale)')
plt.xlabel('Training Set Size')
plt.title('Learning Curves for Decision Tree Regressor (Original Scale)')
plt.legend()
plt.grid(True)
plt.show()

37

Learning curves were used to assess how training and validation scores changed with training set
size. Although a gap between training and validation RMSE suggests potential overfitting, it
may also reflect the inherent complexity and variability of the data. Given these factors, while
performance could improve, the results are expected for this challenging task.

[40]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import validation_curve
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error

Define a custom scoring function to calculate RMSE on the original scale
def rmse_original_scale(estimator, X, y):

y_pred_log = estimator.predict(X)
y_pred_original = np.expm1(y_pred_log)
y_original = np.expm1(y)
rmse = np.sqrt(mean_squared_error(y_original, y_pred_original))
return -rmse # Negative RMSE because higher is better for scoring in␣

↪validation_curve

Parameters to evaluate
param_grid = {

"max_depth": [0, 5, 10, 15, 20, 25, 30], # Replace 'None' with 30

38

"min_samples_split": [2, 5, 10, 15, 20],
"min_samples_leaf": [1, 2, 4, 6, 8, 10],
"max_features": ['auto', 'sqrt', 'log2']

}

Create a 2x2 grid of subplots
fig, axes = plt.subplots(2, 2, figsize=(14, 14))

Validation Curve for `max_depth`
param_range = param_grid["max_depth"]
train_scores, test_scores = validation_curve(

DecisionTreeRegressor(), X, y, param_name="max_depth",␣
↪param_range=param_range,

cv=5, scoring=rmse_original_scale, n_jobs=-1
)

train_scores_mean = -np.mean(train_scores, axis=1)
test_scores_mean = -np.mean(test_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

axes[0, 0].plot(param_range, train_scores_mean, label='Training RMSE',␣
↪color='r', marker='o')

axes[0, 0].fill_between(param_range, train_scores_mean - train_scores_std,␣
↪train_scores_mean + train_scores_std,

alpha=0.2, color='r')
axes[0, 0].plot(param_range, test_scores_mean, label='Validation RMSE',␣

↪color='g', marker='o')
axes[0, 0].fill_between(param_range, test_scores_mean - test_scores_std,␣

↪test_scores_mean + test_scores_std, alpha=0.2, color='g')
axes[0, 0].set_title('Validation Curve for max_depth')
axes[0, 0].set_xlabel('max_depth')
axes[0, 0].set_ylabel('RMSE (Original Scale)')
axes[0, 0].legend()
axes[0, 0].grid(True)

Validation Curve for `min_samples_split`
param_range = param_grid["min_samples_split"]
train_scores, test_scores = validation_curve(

DecisionTreeRegressor(), X, y, param_name="min_samples_split",␣
↪param_range=param_range,

cv=5, scoring=rmse_original_scale, n_jobs=-1
)

train_scores_mean = -np.mean(train_scores, axis=1)
test_scores_mean = -np.mean(test_scores, axis=1)

39

train_scores_std = np.std(train_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

axes[0, 1].plot(param_range, train_scores_mean, label='Training RMSE',␣
↪color='r', marker='o')

axes[0, 1].fill_between(param_range, train_scores_mean - train_scores_std,␣
↪train_scores_mean + train_scores_std,

alpha=0.2, color='r')
axes[0, 1].plot(param_range, test_scores_mean, label='Validation RMSE',␣

↪color='g', marker='o')
axes[0, 1].fill_between(param_range, test_scores_mean - test_scores_std,␣

↪test_scores_mean + test_scores_std,
alpha=0.2, color='g')

axes[0, 1].set_title('Validation Curve for min_samples_split')
axes[0, 1].set_xlabel('min_samples_split')
axes[0, 1].set_ylabel('RMSE (Original Scale)')
axes[0, 1].legend()
axes[0, 1].grid(True)

Validation Curve for `min_samples_leaf`
param_range = param_grid["min_samples_leaf"]
train_scores, test_scores = validation_curve(

DecisionTreeRegressor(), X, y, param_name="min_samples_leaf",␣
↪param_range=param_range,

cv=5, scoring=rmse_original_scale, n_jobs=-1
)

train_scores_mean = -np.mean(train_scores, axis=1)
test_scores_mean = -np.mean(test_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

axes[1, 0].plot(param_range, train_scores_mean, label='Training RMSE',␣
↪color='r', marker='o')

axes[1, 0].fill_between(param_range, train_scores_mean - train_scores_std,␣
↪train_scores_mean + train_scores_std,

alpha=0.2, color='r')
axes[1, 0].plot(param_range, test_scores_mean, label='Validation RMSE',␣

↪color='g', marker='o')
axes[1, 0].fill_between(param_range, test_scores_mean - test_scores_std,␣

↪test_scores_mean + test_scores_std,
alpha=0.2, color='g')

axes[1, 0].set_title('Validation Curve for min_samples_leaf')
axes[1, 0].set_xlabel('min_samples_leaf')
axes[1, 0].set_ylabel('RMSE (Original Scale)')
axes[1, 0].legend()

40

axes[1, 0].grid(True)

Validation Curve for `max_features`
param_range = param_grid["max_features"]
train_scores, test_scores = validation_curve(

DecisionTreeRegressor(), X, y, param_name="max_features",␣
↪param_range=param_range,

cv=5, scoring=rmse_original_scale, n_jobs=-1
)

Compute the mean and standard deviation for each training size
train_scores_mean = -np.mean(train_scores, axis=1)
test_scores_mean = -np.mean(test_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

Plot on the last axis (1,1)
axes[1, 1].plot(param_range, train_scores_mean, label='Training RMSE',␣

↪color='r', marker='o')
axes[1, 1].fill_between(param_range, train_scores_mean - train_scores_std,␣

↪train_scores_mean + train_scores_std,
alpha=0.2, color='r')

axes[1, 1].plot(param_range, test_scores_mean, label='Validation RMSE',␣
↪color='g', marker='o')

axes[1, 1].fill_between(param_range, test_scores_mean - test_scores_std,␣
↪test_scores_mean + test_scores_std,

alpha=0.2, color='g')
axes[1, 1].set_title('Validation Curve for max_features')
axes[1, 1].set_xlabel('max_features')
axes[1, 1].set_ylabel('RMSE (Original Scale)')
axes[1, 1].legend()
axes[1, 1].grid(True)

Adjust layout and show the plot
plt.tight_layout()
plt.show()

41

Table 6. Hyperparameter tuning

Hyper
parameter Training RMSE Trend Validation RMSE Trend Insights
Max Depth Decreases significantly

as max depth
increases, reaching
near zero at higher
depths.

Decreases initially, then
stabilizes, indicating
overfitting at higher
depths.

Increasing max depth reduces
training error but leads to
overfitting as validation error
stabilizes.

42

Hyper
parameter Training RMSE Trend Validation RMSE Trend Insights
Min
Samples
Split

Increases as min
samples split
increases, indicating
less complex models.

Remains relatively stable
with a slight increase,
indicating minimal
impact on validation
error.

Higher min samples split
values lead to simpler models
with higher training error
but stable validation error.

Min
Samples
Leaf

Increases as min
samples leaf increases,
indicating less
complex models.

Remains relatively stable
with a slight increase,
indicating minimal
impact on validation
error.

Higher min samples leaf
values lead to simpler models
with higher training error
but stable validation error.

Max
Features

Remains constant,
indicating no
significant impact on
training error.

Remains relatively stable,
indicating minimal
impact on validation
error.

Changing max features does
not significantly affect the
model’s performance.

This table provides specific insights derived from each validation curve, helping to understand how
different hyperparameters impact the model’s performance.

[41]: import matplotlib.pyplot as plt

Assuming y_test_original and y_test_pred_original are already defined from␣
↪your previous code cell

Scatter Plot: Actual vs Predicted
plt.figure(figsize=(10, 6))
plt.scatter(y_test_original, y_test_pred_original, alpha=0.3, color='blue')
plt.plot([y_test_original.min(), y_test_original.max()], [y_test_original.

↪min(), y_test_original.max()], 'k--', lw=2)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs Predicted on Test Set (Original Scale)')
plt.grid(True)
plt.show()

43

Predicted vs. Actual Scatter Plot: This scatter plot compared the actual number of students
enrolled (x-axis) to the predicted number of students enrolled (y-axis), providing a visual represen-
tation of prediction accuracy.

The scatter plot shows that the model generally predicts well for courses with lower enrollments,
but tends to underpredict for courses with higher actual enrollments. The spread of points indicates
that there are larger errors for courses with a high number of enrollments, reflecting the model’s
difficulty in capturing high variability.

Random Forest
[42]: import pandas as pd

import numpy as np
from sklearn.model_selection import KFold
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score

Data Preparation
X = df_ml.drop(columns=['course-enrolled-student_capped_and_logged'])
y = df_ml['course-enrolled-student_capped_and_logged']

Optimize Train-Test Split using K-Fold Cross-Validation
kf = KFold(n_splits=5, shuffle=True, random_state=42)

Initialize lists to store metrics
train_r2_list, test_r2_list = [], []

44

train_rmse_log_list, test_rmse_log_list = [], []
train_rmse_original_list, test_rmse_original_list = [], []
r2_original_test_list = []

Define fixed hyperparameters for RandomForestRegressor
rf_regressor = RandomForestRegressor(
random_state=42
)

Perform K-Fold Cross-Validation
for train_index, test_index in kf.split(X):

X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]

Train the model
rf_regressor.fit(X_train, y_train)

Predictions
y_train_pred = rf_regressor.predict(X_train)
y_test_pred = rf_regressor.predict(X_test)

Evaluate the model (R² and RMSE on log scale)
train_r2 = rf_regressor.score(X_train, y_train)
test_r2 = rf_regressor.score(X_test, y_test)
train_rmse_log = np.sqrt(mean_squared_error(y_train, y_train_pred))
test_rmse_log = np.sqrt(mean_squared_error(y_test, y_test_pred))

Reverse log1p transformation for predictions and actual values
y_train_pred_original = np.expm1(y_train_pred)
y_test_pred_original = np.expm1(y_test_pred)
y_train_original = np.expm1(y_train)
y_test_original = np.expm1(y_test)

Compute RMSE and R² on the original scale
train_rmse_original = np.sqrt(mean_squared_error(y_train_original,␣

↪y_train_pred_original))
test_rmse_original = np.sqrt(mean_squared_error(y_test_original,␣

↪y_test_pred_original))
r2_original_test = r2_score(y_test_original, y_test_pred_original)

Append metrics to lists
train_r2_list.append(train_r2)
test_r2_list.append(test_r2)
train_rmse_log_list.append(train_rmse_log)
test_rmse_log_list.append(test_rmse_log)
train_rmse_original_list.append(train_rmse_original)
test_rmse_original_list.append(test_rmse_original)

45

r2_original_test_list.append(r2_original_test)

Calculate average metrics over all folds
avg_train_r2 = np.mean(train_r2_list)
avg_test_r2 = np.mean(test_r2_list)
avg_train_rmse_log = np.mean(train_rmse_log_list)
avg_test_rmse_log = np.mean(test_rmse_log_list)
avg_train_rmse_original = np.mean(train_rmse_original_list)
avg_test_rmse_original = np.mean(test_rmse_original_list)
avg_r2_original_test = np.mean(r2_original_test_list)

Output results with improved formatting
print("\n### Cross-Validation Results ###\n")

print("Training R² Scores (Log Scale):")
print(f" Individual Scores: {train_r2_list}")
print(f" Mean Training R²: {avg_train_r2:.4f} ± {np.std(train_r2_list):.4f}")

print("\nTest R² Scores (Log Scale):")
print(f" Individual Scores: {test_r2_list}")
print(f" Mean Test R²: {avg_test_r2:.4f} ± {np.std(test_r2_list):.4f}")

print("\nTraining RMSE Scores (Log Scale):")
print(f" Individual Scores: {train_rmse_log_list}")
print(f" Mean Training RMSE (Log Scale): {avg_train_rmse_log:.4f} ± {np.

↪std(train_rmse_log_list):.4f}")

print("\nTest RMSE Scores (Log Scale):")
print(f" Individual Scores: {test_rmse_log_list}")
print(f" Mean Test RMSE (Log Scale): {avg_test_rmse_log:.4f} ± {np.

↪std(test_rmse_log_list):.4f}")

print("\nTraining RMSE Scores (Original Scale):")
print(f" Individual Scores: {train_rmse_original_list}")
print(f" Mean Training RMSE (Original Scale): {avg_train_rmse_original:.4f} ±␣

↪{np.std(train_rmse_original_list):.4f}")

print("\nTest RMSE Scores (Original Scale):")
print(f" Individual Scores: {test_rmse_original_list}")
print(f" Mean Test RMSE (Original Scale): {avg_test_rmse_original:.4f} ± {np.

↪std(test_rmse_original_list):.4f}")

print(f"\nMean Test R² on Original Scale: {avg_r2_original_test:.4f} ± {np.
↪std(r2_original_test_list):.4f}\n")

Step 5: Baseline Comparison

46

mean_baseline_train_original = np.mean(np.expm1(y_train)) # Back-transform␣
↪log1p

median_baseline_train_original = np.median(np.expm1(y_train)) # Back-transform␣
↪log1p

mean_baseline_test_original = np.mean(np.expm1(y_test)) # Back-transform log1p
median_baseline_test_original = np.median(np.expm1(y_test)) # Back-transform␣

↪log1p

y_mean_pred_test = np.full_like(y_test, mean_baseline_test_original) # Predict␣
↪the mean for all test samples

y_median_pred_test = np.full_like(y_test, median_baseline_test_original) #␣
↪Predict the median for all test samples

mean_mse_test_original = mean_squared_error(y_test_original, y_mean_pred_test)
median_mse_test_original = mean_squared_error(y_test_original,␣

↪y_median_pred_test)

mean_rmse_test_original = np.sqrt(mean_mse_test_original) # RMSE for mean␣
↪baseline on test data

median_rmse_test_original = np.sqrt(median_mse_test_original) # RMSE for␣
↪median baseline on test data

mean_r2_test_original = r2_score(y_test_original, y_mean_pred_test)
median_r2_test_original = r2_score(y_test_original, y_median_pred_test)

print("\n### Baseline Comparison on Test Set (Original Scale) ###\n")
print(f"Mean Baseline (Test, Original Scale) - RMSE: {mean_rmse_test_original:.

↪2f}, R²: {mean_r2_test_original:.4f}")
print(f"Median Baseline (Test, Original Scale) - RMSE:␣

↪{median_rmse_test_original:.2f}, R²: {median_r2_test_original:.4f}")

Scatter Plot for Model Predictions vs Actuals
plt.figure(figsize=(10, 6))
plt.scatter(y_test_original, y_test_pred_original, alpha=0.3, color='blue')
plt.plot([y_test_original.min(), y_test_original.max()], [y_test_original.

↪min(), y_test_original.max()], 'k--', lw=2)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs Predicted on Test Set (Original Scale)')
plt.grid(True)
plt.show()

Cross-Validation Results

Training R² Scores (Log Scale):

47

Individual Scores: [0.9567275979526518, 0.9545127701983515, 0.954469130637433,
0.9573093596061714, 0.9552569151565852]

Mean Training R²: 0.9557 ± 0.0012

Test R² Scores (Log Scale):
Individual Scores: [0.6656996174071502, 0.6940993006443086,

0.6986339791167677, 0.6558350339206039, 0.6967546921162122]
Mean Test R²: 0.6822 ± 0.0178

Training RMSE Scores (Log Scale):
Individual Scores: [0.5525609157089544, 0.5663261795666649,

0.5676190563533752, 0.5509733602029285, 0.5599356944893031]
Mean Training RMSE (Log Scale): 0.5595 ± 0.0068

Test RMSE Scores (Log Scale):
Individual Scores: [1.5383477793446856, 1.473680454417544, 1.44988798256613,

1.5352372680059245, 1.4851238482498434]
Mean Test RMSE (Log Scale): 1.4965 ± 0.0349

Training RMSE Scores (Original Scale):
Individual Scores: [11243.481222211696, 11314.272711117801,

11330.680824386829, 10941.977942511003, 11307.767195150742]
Mean Training RMSE (Original Scale): 11227.6360 ± 145.8744

Test RMSE Scores (Original Scale):
Individual Scores: [18419.563970268948, 19440.25169605526, 18064.66879802729,

21069.31978261148, 21240.03861603979]
Mean Test RMSE (Original Scale): 19646.7686 ± 1312.5457

Mean Test R² on Original Scale: 0.5147 ± 0.0270

Baseline Comparison on Test Set (Original Scale)

Mean Baseline (Test, Original Scale) - RMSE: 31205.18, R²: 0.0000
Median Baseline (Test, Original Scale) - RMSE: 32701.18, R²: -0.0982

48

The scatter plot for the Random Forest model shows improved alignment with the actual values for
lower enrollment courses, compared to the Decision Tree. However, like the Decision Tree, it still
struggles with higher enrollments, though the variance in predictions is generally smaller, indicating
better generalization and stability.

6.2 Limitation
The dataset may be biased due to missing values excluded during data cleaning, caused by network
errors and challenges in capturing JavaScript-rendered content. For instance, missing course-price
data likely excluded free courses, skewing the dataset toward paid offerings. This cleaning reduced
the dataset size from 19,425 to 8,148 observations, diminishing diversity and completeness. The
smaller dataset increases the risk of overfitting as it is less likely to reflect the population, leading
to the generalization problem accurately (Charilaou and Battat, 2022).

The dataset may also introduce potential bias due to omitted variables, resulting in biased and
inconsistent estimates (Wikipedia, 2020). Some potentially impactful variables, such as course
ranking and elapsed time since launch were not included in the dataset and model. These key
feature omissions could cause misattribution of effects and skew predictions (Feigenberg, Ost and
Qureshi, 2023). These omissions limit the model’s ability to capture the complex factors influencing
student decisions, potentially reducing its generalizability.

49

7 Conclusion and Business Recommendations
7.1 Business Recommendations
By leveraging this machine learning model, Udemy can create a webpage for instructors to estimate
the success of an unpublished course and experiment with factors (such as pricing) to boost course
performance. This would function like Facebook’s ad publishing page, which provides impression
estimates based on the duration and cost of advertising. Instructors can select features of the
course they intend to publish, such as the course price, duration, topic, and others. The model
then combines this information with pre-existing instructor data to estimate student enrollment.
Instructors could further use this model to test out permutations for successful courses and modify
features to optimise student enrolment. As a result, instructors would feel more confident in
publishing courses, fostering platform growth.

7.2 Next Steps
Since this model is restricted to courses in computer science and business analytics, moving forward,
other courses on the platform can also be used to train the model further and expand the business-
use case.

To address the limitations highlighted in section 4.2, using statistical methods to impute missing
values and enhancing web scraping techniques for JavaScript-rendered content can help improve
data quality.

Additionally, including other variables (such as course rank or launch time) and interaction terms
can provide crucial information for forecasts, prevent omitted variable bias and capture more nu-
anced relationships between variables. These would enhance the predictive accuracy of the model.

7.3 Conclusion
Out of the various machine learning models explored in this report, the random forest model with
cross-validation is the optimal model to estimate student enrollment in Udemy’s courses. This
model uses information on the course and instructor to predict the course’s success. Udemy can
use this model to provide instructors with tailored estimates and insights, helping refine course
features and parameters (such as price or duration) before launch.

While useful, this model still has limitations, which can be addressed by incorporating advanced
web scraping, additional predictors and interaction terms. The dataset must also be expanded to
include all available courses on Udemy. Nevertheless, Udemy can utilise this model to create a
more transparent and encouraging environment for instructors, fostering growth on the platform
and optimising revenue.

8 References
Charilaou, P. and Battat, R. (2022). Machine learning models and over-fitting considerations.
World Journal of Gastroenterology, 28(5), pp.605–607. doi:https://doi.org/10.3748/wjg.v28.i5.605.

Feigenberg, B., Ost, B. and Qureshi, J.A. (2023). Omitted Variable Bias in Inter-
acted Models: A Cautionary Tale. Review of Economics and Statistics, [online] pp.1–47.
doi:https://doi.org/10.1162/rest_a_01361.

50

Wikipedia. (2020). Omitted-variable bias. [online] Available at:
https://en.wikipedia.org/wiki/Omitted-variable_bias.

Murel, J. and Kavlakoglu, E. (2024). Dimensionality Reduction. [online] Ibm.com. Available at:
https://www.ibm.com/topics/dimensionality-reduction?utm [Accessed 7 Dec. 2024].

Webscraper.io. (2019). Web Scraper - The #1 web scraping extension. [online] Available at:
https://webscraper.io/.

9 Appendices
9.1 Gen-AI Usage
This machine learning project is supported by generative AI in four areas. Generative AI was a
valuable tool in our machine learning project, particularly in areas not extensively covered in class,
such as encoding categorical variables, using regex for data cleaning, and exploring advanced models
like XGBoost. It allowed us to efficiently tackle complex tasks that would have otherwise required
significant time to research and implement. Additionally, GenAI was very useful in debugging,
helping us quickly identify and resolve errors in our code. However, we also learned that effectively
using AI requires crafting clear and specific prompts. The quality of its suggestions often depended
on how well we articulated our queries. This prompted us to think critically and refine our prompts,
turning the interaction into a learning process in itself. Overall, AI improved our efficiency while
also fostering active learning.

Area Generative AI Contribution Implementation
Data
cleaning

Suggested code for resolving
inconsistencies among the variables and
handling outliers.

Utilized the suggestion to make a more
comprehensive function to handle outliers.

Feature
engi-
neering

Guided the techniques of encoding
categorical variables.

Evaluated and implemented the
appropriate encodings for multiple
categorical variables.

Model
selection

Generative AI helped in comparing the
models and suggesting the
best-performing one.

Analysed metrics accordingly and selected
the final model that meets the project
objectives.

Code
readabil-
ity

Provided suggestions for structuring,
naming, and documenting code to
improve clarity.

Applied and tailored suggestions to
maintain readable and reproducible code
blocks.

9.2 Attribution Contribution
Ruhani Sehgal was an active group member who often shared ideas and proactively problem-solved.
She contributed to the project by handling outliers, conducting exploratory data analysis, and
feature engineering for assigned variables (course-total-hour-length, instructor-rating, and course-
language). She also explored several machine learning models, such as ridge and lasso regressions
and XGBoost. For the markdown cells, she worked on outlier analysis, business recommendations,
next steps, and the conclusion. Finally, she took the initiative to manage the Trello board and kept
a record of the project progress.

51

Jiayi He contributed to the project by extracting and cleaning instructor ratings, course ratings,
and reviews, removing outliers, and exploring their correlation with student enrollments. Jiayi
also classified course topics into categories, ensure proper encoding for multiple-category courses.
Jiayi trained regression and random forest models with RFE for feature selection, documented
explanations for feature engineering, correlation studies, feature selection, limitation and organized
other models for the appendices.

Azizah Din contributed to the machine learning project by extracting and cleaning the instructor
courses, instructor students, course price, and number of lectures. She also handled the outliers,
created the figures for data visualization, made a regression model using selected features with
high correlation, and trained a decision tree cross validation model with hyperparameter tuning.
Azizah also worked on the explanation for problem statement, objective, descriptive analytics, and
generative AI reflections.

Pratham played a crucial role in the project by designing a web scraper to collect data and leading
the cleaning and feature engineering efforts, including handling outliers for course-enrolled-student
and course-instructional-level. Pratham trained machine learning models, such as decision trees and
random forests, and contributed to model evaluation through learning curves, validation curves,
and actual vs. predicted plots. Pratham also performed cross-validation and grid search to optimize
model performance. Additionally, Pratham documented the data preparation and model sections,
refactored code for efficiency, and provided valuable insights in group discussions, applying critical
thinking and technical knowledge to improve the overall project.

9.3 Trello Images
Please find the link to Trello here: https://trello.com/b/36qxVnAP/programming-for-ba

The first screenshot shows how the team started with the project in late October. The first tasks
were related to setting up the Trello board and finding a dataset for the model. The team decided
to use web scraping on Udemy’s website and presented the project idea and outline to our assigned
TA.

[43]: from IPython.display import Image, display

Display Screenshot 1
display(Image(filename="trello_images/Trello Screenshot 1.png"))

52

The second screenshot shows the data cleaning, handling outliers, exploratory data analysis, feature
engineering and additional data scraping work done. Each team member was assigned certain
variables to work on and analyse. Further meetings were held to discuss our findings, update our
assigned TA on the progress and ask for any required support. Towards mid-November, the team
began looking at different machine learning models and planned to discuss findings in a week.

[44]: # Display Screenshot 2
display(Image(filename="trello_images/Trello Screenshot 2.png"))

53

The third iteration of our Trello board shows another meeting with the TA to share our machine
learning model results and discuss the next steps (starting on the Markdown portion of the project).
Each team member was assigned a written part (with corresponding word counts) to complete.
Some additional tasks were identified to organise the Python notebook.

[45]: # Display Screenshot 3
display(Image(filename="trello_images/Trello Screenshot 3.png"))

9.4 Other Models
[46]: # Import necessary libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import RFE
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
!pip install xgboost # Ensure xgboost is installed
import xgboost as xgb

Requirement already satisfied: xgboost in /opt/conda/lib/python3.11/site-

54

packages (2.1.3)
Requirement already satisfied: numpy in /opt/conda/lib/python3.11/site-packages
(from xgboost) (1.26.1)
Requirement already satisfied: nvidia-nccl-cu12 in
/opt/conda/lib/python3.11/site-packages (from xgboost) (2.19.3)
Requirement already satisfied: scipy in /opt/conda/lib/python3.11/site-packages
(from xgboost) (1.11.3)

Linear Regression, Ridge Regression, Lasso Regression, Random Forest, XGBoots
with all features

[47]: # DataFrame: df_ml
Target: 'course-enrolled-student_capp_log'

Split data into features (X) and target (y)
X = df_ml.drop(columns=['course-enrolled-student_capped_and_logged'])
y = df_ml['course-enrolled-student_capped_and_logged']

Split into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣

↪random_state=42)

Standardize the features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Define models
models = {

'Linear Regression': LinearRegression(),
'Ridge Regression': Ridge(alpha=1.0),
'Lasso Regression': Lasso(alpha=0.1),
'Random Forest': RandomForestRegressor(n_estimators=100, random_state=42),
'XGBoost': xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100,␣

↪random_state=42)
}

Train and evaluate models
results = {}
for name, model in models.items():

Train the model
model.fit(X_train, y_train)

Make predictions
y_pred = model.predict(X_test)

55

Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

results[name] = {'MSE': mse, 'R2': r2}
print(f"{name}: MSE = {mse:.4f}, R2 = {r2:.4f}")

Linear Regression: MSE = 2.9720, R2 = 0.5802
Ridge Regression: MSE = 2.9721, R2 = 0.5802
Lasso Regression: MSE = 3.0516, R2 = 0.5689
Random Forest: MSE = 2.3503, R2 = 0.6680
XGBoost: MSE = 2.4896, R2 = 0.6483

SVR
[48]: # DataFrame: df_ml

Target: 'course-enrolled-student_log'

Split data into features (X) and target (y)
X = df_ml.drop(columns=['course-enrolled-student_capped_and_logged'])
y = df_ml['course-enrolled-student_capped_and_logged']

Split into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,␣

↪random_state=42)

Initialize and train the SVR model
print("Training Support Vector Regressor...")
svr = SVR(kernel='rbf', C=1.0, epsilon=0.1)
svr.fit(X_train, y_train)

Make predictions
y_pred = svr.predict(X_test)

Evaluate
r2 = r2_score(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)

print(f"SVR - R^2: {r2:.4f}, MSE: {mse:.4f}, RMSE: {rmse:.4f}")

Reverse log1p transformation for predictions and actual values
y_pred_original = np.expm1(y_pred) # Apply expm1 to predictions
y_test_original = np.expm1(y_test) # Apply expm1 to true values

Compute R^2 and RMSE on the original scale
mse_original = mean_squared_error(y_test_original, y_pred_original)
rmse_original = np.sqrt(mse_original)

56

r2_original = r2_score(y_test_original, y_pred_original)

print(f"R^2 on Original Scale: {r2_original:.4f}")
print(f"RMSE on Original Scale: {rmse_original:.4f}")

Training Support Vector Regressor…
SVR - R^2: 0.5882, MSE: 2.9154, RMSE: 1.7075
R^2 on Original Scale: 0.0686
RMSE on Original Scale: 24319.3662

Random forest with RFE
[49]: # Assuming X_train, X_test, y_train, and y_test are defined and X_train is a␣

↪Pandas DataFrame

Step 1: Initialize the Random Forest Regressor for RFE
RandomForestRegressor is used as the base model for Recursive Feature␣

↪Elimination (RFE)
rf_for_rfe = RandomForestRegressor(

n_estimators=50, # Use fewer trees for faster feature selection
random_state=42,
n_jobs=-1 # Use all available CPU cores

)

Step 2: Use RFE for Feature Selection (e.g., select top 5 features)
rfe = RFE(estimator=rf_for_rfe, n_features_to_select=5)
rfe.fit(X_train, y_train) # Fit RFE to the training data

Step 3: Get the selected features
Ensure X_train is a DataFrame to access column names
selected_features = X_train.columns[rfe.support_] # Mask to get selected␣

↪feature names

print("\nSelected Features (RFE with Random Forest):")
print(selected_features)

Step 4: Filter X_train and X_test to include only selected features
X_train_rfe = X_train[selected_features]
X_test_rfe = X_test[selected_features]

Step 5: Train Random Forest Model with Selected Features
Initialize a new Random Forest Regressor for final training
rf_model = RandomForestRegressor(

n_estimators=5000, # Use more trees for better accuracy
max_depth=None, # No maximum depth
random_state=42,
n_jobs=-1 # Use all available CPU cores

)

57

rf_model.fit(X_train_rfe, y_train) # Train the model on the reduced dataset

Step 6: Make Predictions
Predict on both training and test datasets
y_train_pred = rf_model.predict(X_train_rfe)
y_test_pred = rf_model.predict(X_test_rfe)

Step 7: Evaluate the Model
Calculate Mean Squared Error (MSE) and R-squared (R²) for training data
train_mse = mean_squared_error(y_train, y_train_pred)
train_r2 = r2_score(y_train, y_train_pred)

Calculate MSE and R² for test data
test_mse = mean_squared_error(y_test, y_test_pred)
test_r2 = r2_score(y_test, y_test_pred)

Print evaluation metrics
print("\nRandom Forest Model Evaluation with Selected Features:")
print("Training Data:")
print(f"Mean Squared Error: {train_mse:.4f}")
print(f"R-squared: {train_r2:.4f}")

print("\nTest Data:")
print(f"Mean Squared Error: {test_mse:.4f}")
print(f"R-squared: {test_r2:.4f}")

Step 8: Feature Importances from the Final Model
Create a DataFrame to display feature importances
feature_importances = pd.DataFrame({

'Feature': selected_features,
'Importance': rf_model.feature_importances_

}).sort_values(by='Importance', ascending=False)

print("\nFeature Importances from Random Forest (Selected Features):")
print(feature_importances)

Step 9: Plot Feature Importances
Visualize feature importances with a horizontal bar chart
plt.figure(figsize=(10, 6))
plt.barh(feature_importances['Feature'], feature_importances['Importance'],␣

↪color='skyblue')
plt.gca().invert_yaxis() # Invert y-axis to show the most important features␣

↪on top
plt.title('Feature Importances (Random Forest with Selected Features)')
plt.xlabel('Importance Score')
plt.show()

58

Selected Features (RFE with Random Forest):
Index(['course-price_capped_and_logged',

'instructor-reviews_capped_and_logged',
'instructor-courses_capped_and_logged',
'instructor-students_capped_and_logged',
'course-num-of-lectures_capped_and_logged'],
dtype='object')

Random Forest Model Evaluation with Selected Features:
Training Data:
Mean Squared Error: 0.3237
R-squared: 0.9541

Test Data:
Mean Squared Error: 2.4887
R-squared: 0.6484

Feature Importances from Random Forest (Selected Features):
Feature Importance

3 instructor-students_capped_and_logged 0.55
2 instructor-courses_capped_and_logged 0.16
1 instructor-reviews_capped_and_logged 0.11
4 course-num-of-lectures_capped_and_logged 0.10
0 course-price_capped_and_logged 0.09

59

	Predicting Student Enrollment on Udemy
	Table of Contents
	Introduction
	Problem Statement
	Objective
	Data

	Data Preparation
	Finding Missing Values
	Cleaning variables
	Outlier Analysis
	Feature Engineering

	Exploratory Data Analysis (EDA)
	Descriptive Analysis
	Correlation Studies and Feature Selection

	Models
	Model Selection and Training
	Limitation

	Conclusion and Business Recommendations
	Business Recommendations
	Next Steps
	Conclusion

	References
	Appendices
	Gen-AI Usage
	Attribution Contribution
	Trello Images
	Other Models

