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Introduction

This report details the design and implementation of an AI-Powered Competitor Intelligence
Tool, which uses a dual-agent architecture to identify competitors and analyze customer
interactions. It leverages LLMs and agentic systems to automate competitor intelligence
gathering, addressing the need for efficient and insightful competitor analysis. The report also
covers the system design, implementation using Streamlit and Agno framework, data
preparation, adherence to software engineering best practices, and evaluation of the tool's
performance and scalability.

The full project code can be found at

https://github.com/prathamskk/ucl rag mcp ai_competitor_intelligence tool

System Design and Architecture

AI COMPETITOR INTELLIGENCE TOOL

Customer
Interaction
Analysis Agent

Competitor
Finder Agent

The AI Competitor Intelligence Tool is structured around a dual-agent architecture, comprising
the Competitor Finder Agent and the Customer Interaction Analysis Agent. This design
facilitates a modular approach, enabling focused functionality within each agent while allowing
for seamless integration. The Competitor Finder Agent is responsible for identifying and


https://github.com/prathamskk/ucl_rag_mcp_ai_competitor_intelligence_tool

profiling competitors, while the Customer Interaction Analysis Agent focuses on in-depth
analysis of competitor behavior. This high-level architecture allows for scalability and
adaptability, enabling the system to incorporate additional data sources and analytical
capabilities in the future.
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Generation (RAG) pipeline. The design incorporates both an offline data preparation phase and

an online, user-triggered analysis phase, as illustrated in the RAG + LLM diagram

Dataset Structure

The underlying dataset utilized for this preparation phase has the following characteristics:

Content: The source data is structured as a CSV file where each row represents an individual
tweet. Conversations are implicitly defined by reply chains, and it's noted that meaningful
conversations typically include at least one consumer request and one company response. The
inbound field is key for identifying company user IDs and distinguishing customer messages
from company replies.

Columns: The key columns include:

e tweet_id: A unique, anonymized identifier for the tweet, referenced by
response_tweet_idand in_response_to_tweet_id.

e author_id: A unique, anonymized user identifier. Mentions (@) within tweet text are
replaced with these anonymized IDs.

e 1inbound: A boolean flag indicating if the tweet is directed towards a company
providing support, useful for organizing conversational data.

e created_at: Timestamp indicating when the tweet was posted.

e text: The actual content of the tweet. Sensitive information like phone numbers or
email addresses has been masked (e.g., __email__).

e response_tweet_id: Comma-separated list of tweet IDs that are direct responses to
the current tweet.

e in_response_to_tweet_id: The ID of the tweet to which the current tweet is a
direct reply, if applicable.

Limitations:

e Data Source: Analysis is limited to Twitter data, which does not represent a
competitor's entire online presence.

e Brand Coverage: The analysis is limited to a select number of brands, based on the
available Twitter dataset.

e Data Age: The system uses historical Twitter data (from 2017), which may not reflect
current trends.



Future Expansion: The system architecture is designed with modularity in mind. This

facilitates potential future enhancements, such as integrating live data streams from various
sources, including other social media platforms or news feeds, to provide more real-time and
comprehensive analysis.

Data Preparation

The data preparation phase begins with a substantial dataset comprising approximately 3
million tweets related to customer support interactions. A key challenge is transforming this
raw tweet data into meaningful conversation threads suitable for analysis. This is handled by an
Apache Spark job (sampler_spark.py). The logic identifies potential conversation starting
points by selecting tweets that are marked as inbound (directed to a support account) and are
not replies to other tweets (in_response_to_tweet_id is null). From this pool of initial
tweets, a representative sample (e.g., 10,000) is randomly selected (using a fixed random state
for reproducibility) to form the basis of the conversation dataset. For each selected starting
tweet, the system reconstructs the full conversation thread by recursively following the reply
chain using the response_tweet_id links, gathering all constituent tweets, and sorting them
chronologically by created_at. This process transforms the data structure from individual
tweets to complete conversation objects. These reconstructed conversations are then stored in
the efficient Parquet format (to_parquet file). Following this, an ingestion script
(ingest.py) processes these conversation objects. Crucially, each complete conversation is
passed through an embedding model, specifically, Gemini's text-embedding-004
(generating 768-dimension vectors), to capture its overall semantic meaning. These vector
embeddings representing entire conversations are then stored and indexed in a specialized
vector database - in this case, PgVector, an open-source extension for Postgres, which may
be containerized using Docker for ease of deployment and management. This offline process
ensures that the conversational data is readily available and optimized for fast retrieval during
the analysis phase.

RAG Flow

The RAG Flow is initiated online when a user interacts with the Streamlit dashboard, providing
a specific company name. The Customer Interaction Analysis Agent takes this input and
formulates a query aimed at analyzing that company's interactions based on the prepared data.
This query triggers a vector similarity search within the PgVector database to retrieve the
most relevant Twitter conversations corresponding to the query's semantic content. These



retrieved conversations serve as the context or "retrieved knowledge." This context is then

dynamically combined with a carefully crafted prompt, which includes a description of the task,
specific instructions for the analysis, and the desired output format. This augmented prompt,
containing both the instructions and the relevant data, is sent to a Large Language Model
(LLM), Gemini, for generation. The LLM synthesizes the information to produce a detailed
analysis of the company's customer interactions based on the provided conversational evidence.
Finally, this generated analysis is presented back to the user through the Streamlit interface.

RAG Evaluation

To ensure the quality and reliability of this RAG pipeline, the design includes provisions for
Evaluation using frameworks like ragas. This allows for systematic assessment of the retrieval
relevance and the quality of the generated analysis, facilitating iterative improvements to the
prompt, retrieval strategy, or underlying models.
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Funetion and Input

The Competitor Finder Agent serves as a crucial component within the system. Its primary
function is to identify and profile competitors operating within a specified industry. The agent

receives the industry name as its input from the user.




Agentic Decision-Making

This agent operates with a degree of autonomy, making it an agentic entity. Based on its
internal reasoning and the provided industry name, it will independently decide when and
whether it needs to utilize external resources, such as the search API.

Leveraging Search API via MCP

When the agent determines that gathering external information is necessary, it leverages the
Exa Search API. This access is facilitated by the Model Context Protocol (MCP). MCP
functions as a standardized interface, enabling the agent, which is powered by Google's Gemini,
to seamlessly connect to and utilize the Exa Search API as a pre-built integration.

Data Processing and Output

Once the agent has retrieved search results using the Exa Search API, Google's Gemini takes
over to process the gathered information. It analyzes the data to identify the most relevant
competitors within the specified industry. Finally, the agent generates a report as its output,
which includes a list of identified competitors and potentially other pertinent information
gathered during the process.



Implementation

Dashboard Overview

SIDEBAR: KEY MANAGEMENT ,TOOLS TAB USER INPUT ANALYSIS RESULTS

Deploy

API Keys

® Competitor Finder

Gemini API Key

© Customer Interaction Analysis

Exa APl Key

P Enter a company name to analyze its cyst6mer interactions and online presence. The analysis focuses on social media engagement, customer service practices, and response patterns.

Enter Company Name:
APl Keys Loaded.

XboxSupport

Based on the provided data, a comprehensive analysis of XboxSupport's handling of negative feedback and engagement on Twitter in 2017 is difficult due to the limitations of the data. The snippets
include many interactions with other companies' support accounts, and only a few interactions directly involve XboxSupport responding to negative feedback. Therefore, a complete assessment

across all aspects of the research task is not possible. However, some observations can be made from the limited information:

Public vs. Private Resolution: The provided data shows that XboxSupport primarily attempts public resolutions. For example, in one instance (tweet ID 1551993), a user complained about being
kicked offline. XboxSupport responded publicly, asking clarifying questions. However, this initial public response led to further private communication as suggested by the follow-up request for a

photo of the NAT type. This suggests a mixed approach, initiating publicly but frequently transitioning to private channels for detailed troubleshooting

Sentiment Analysis: In the limited examples, XboxSupport's responses to negative feedback are generally professional and polite, using phrases like "Hi there!

mm,” and “Let’s have you..." They
avoid confrontational language and try to assist the user. However, the data is insufficient for a full sentiment analysis.

Actionable Steps: The example involving tweet ID 1871840 shows XboxSupport providing a link to steps (https://t.co/rhsLpNZvg8) for a user whose Xbox wouldn't turn on. This is an

example of an actionable step provided publicly. In other cases, the actionable step is to DM for more information.
Positive Reinforcement: There are no examples of positive feedback engagement within this dataset.

Brand Voice Consistency: The limited data suggests some consistency in XboxSupport's brand voice. They generally use a helpful and approachable tone. However, a larger sample size would be

needed to confirm consistency fully.
Social Media Support Scope: Based on the limited data, XboxSupport addresses technical issues (connectivity, console malfunctions), account problems, and general inquiries.

Resolution Effectiveness Metrics: No metrics are available in the provided references to evaluate resolution effectiveness.

Self-Service Promotion: In one instance (tweet ID 1871837), links to a page (https://t.co/thsLpNZve8) self-service promotion.

The project's dashboard was developed using Streamlit, an open-source Python framework
designed for creating and sharing data-driven web applications with minimal effort. The
dashboard's interface is organized into distinct sections:

Sidebar: Key Management:

The sidebar on the dashboard provides key management functionality, allowing users to input
and manage their API keys. It includes input fields for both "Gemini API Key" and "Exa API Key",
and masks the input for security purposes. Additionally, an "API Keys Loaded" indicator is
displayed to confirm that the keys have been successfully entered.

Tools Tab:



The dashboard's main content area is organized into two separate tabs: "Customer Interaction

Analysis" and "Competitor Finder". This tabbed layout allows users to easily switch between the
two distinct analytical tools provided by the dashboard.

Deploy
API Keys #. Customer Interaction Analysis & Compet:
° i ind
Competitor Finder
BxaAPIKey
Pes This tool helps you identify and analyze competitofS in your industry.
1. Enter your industry/market
APl Keys Loaded. 2. Getalist of potential competitors with Al-powered analysis
3. View competitor information apd sources
Enter Industry/Market
Laptop
Find Competito
Competitor Analysis Search Information
Based on the search results from , several top laptop competitors are mentioned across different review sites. These
B About the Results -
include Apple, ASUS, Dell, Microsoft, Lenovo, HP, Acer, and Samsung. A comprehensive analysis using exa_a would require
individual queries for each competitor due to the limitations of the available tools. However, | can provide a generalized overview «  Al-powered competitor analysis
based on common knowledge and the snippets from the search results: « Resultsinclude company overviews and market
positions
Competitor  Main Products/Services Market Position Key Strengths « Information s gathered from multiple sources
Premium segment, strong High-quality build, user-friendly «  Companies are ranked by market relevance
Apple MacBooks (various models), iPads
brand loyalty macOS, strong ecosystem integration
AsUS Wide range of laptops (gaming, Strong mid-range to high- Innovation in design and features, good
ultraportable, etc.) end presence value for money (in some segments)
pell XPS series, Latitude series Strong presence across Reliable performance, good customer
ol
(business), Inspiron series various segments support, wide range of options
) Premium segment, known Integration with Windows ecosystem,
Microsoft Surface laptops, Surface tablets
- for2.in-1s. innovative desions (in same madels)

User Input:

Users have the ability to personalize their analysis by inputting specific parameters into the
designated fields provided on the dashboard. Subsequently, they can initiate the analysis
process by clicking the ‘Analyze' button, which will then generate the corresponding results.

Analysis Results:

The results of the analysis are displayed in a text-based format on the dashboard. These
text-based results encompass a range of insights and observations that are directly derived
from the data.

Agents Implementation

The project utilizes Agno, an open-source platform for building, deploying, and monitoring Al
agentic systems, to facilitate the analysis and response generation. Agno's model-agnostic



design allows for the integration of various large language models, providing flexibility and

scalability. The platform's capabilities, including memory management, external knowledge
integration, and tool utilization, are leveraged to create high-performing agents.

Customer Interaction Analysis Agent

The following prompt was crafted to define the agent’s role and core expertise, ensuring it
operates within the intended analytical scope.

# Define agent description and instructions (keep existing ones)
agent description = dedent ("""\

You are an expert analyst specializing in customer feedback and social
media engagement.

Your expertise includes:

- Analyzing customer interactions on platforms like Twitter.

- Identifying patterns in how companies respond to positive and
negative feedback.

- Assessing the effectiveness and professionalism of customer service
practices on social media.

- Extracting key insights and providing structured reports based on
provided textual data.\

mwn ")

This structured prompt was designed to guide the agent through a systematic process for
analyzing customer interactions and extracting insights. Below are its operational phases.

agent instructions = dedent (£"""\

1. Information Extraction Phase &

- Carefully read the provided references (covering year 2017).

- Identify and extract specific examples related to how {company name}
handles negative feedback and engages with the public on Twitter and
dedicated customer service practices on social media.

- Pay close attention to the specific aspects outlined in the research
task (Public vs. Private Resolution, Sentiment Analysis, Actionable Steps,
Positive Reinforcement, Brand Voice Consistency, Social Media Support
Scope, Resolution Effectiveness Metrics, Self-Service Promotion,
Personalized Communication).

2. Analysis Phase [l

- For each of the aspects mentioned above, analyze the extracted
information from the references.

- Cross-reference information across different references if
applicable.

- Identify patterns, trends, and specific examples that illustrate
{company name}'s approach.

- Note any inconsistencies or notable observations.

3. Reporting Phase "
- Structure your analysis based on the points mentioned in the
research task.



- For each point, provide a concise summary of your findings,
supported by direct evidence or examples from the references.
- Maintain an objective and analytical tone.

4. Quality Control v

- Ensure that all conclusions are directly supported by the provided
references.

- Verify the accuracy of the extracted information.

- Ensure clarity and coherence in your report.\

nmn ")

The following prompts were designed to guide the Al agent in generating structured and
insightful analysis based on the retrieved data.

expected output = dedent (£"""\

Research Task: Based on the provided references (covering year 2017),
analyze how {company name} handles negative feedback and engages with the
public on Twitter and dedicated customer service practices on social
media.

Analyze their responses to negative comments, reviews, or complaints,
paying close attention to:

* **Public vs. Private Resolution:** Determine the frequency with
which they publicly acknowledge issues versus offering private resolution,
according to the references.

* **Sentiment Analysis (if your RAG can handle it) :** Based on the
language used in their responses to negative feedback, assess the overall
professionalism and empathy.

* **Actionable Steps:** Identify specific examples from the references
where {company name} indicates steps being taken to address underlying
issues.

* **Positive Reinforcement:** Analyze how they acknowledge and engage
with positive comments and praise, providing examples from the references.
* **Brand Voice Consistency:** Describe the overall tone and voice
used in their public interactions, noting any inconsistencies observed in

the provided references.

* **Social Media Support Scope:** Identify the range of customer
service inquiries addressed on social media, as evidenced in the
references.

* **Resolution Effectiveness Metrics (if available in references) :**
Based on the provided information, evaluate the clarity and effectiveness
of their resolution process, noting any metrics or indicators of success.

* **Self-Service Promotion:** Identify instances where they direct
customers to FAQs or knowledge bases within the provided references.

* **Personalized Communication:** Analyze the level of personalization
in their responses, providing examples from the references.



**Instructions for RAG:** Your analysis must be solely based on the
information provided in the references. For each point, provide direct
evidence or examples from the text to support your conclusions.

mwn ")

This section outlines the initialization and configuration of the Al agent, including embedding,
vector database, and knowledge base integration. This implementation follows a traditional
Retrieval-Augmented Generation (RAG) approach, where a query is used to retrieve relevant
contextual data before being processed by an LLM for generation. The system integrates an
offline data preparation phase and an online retrieval process to ensure the most relevant
conversational data is available for analysis.

embedder = GeminiEmbedder (task type="RETRIEVAL QUERY",

api key= gemini key)

vector db = PgVector (table name= table name, db url= db url,
embedder=embedder, search type=SearchType.hybrid)

knowledge base = CSVKnowledgeBase (path= csv path, vector db=vector db ,
num_documents=10)

# Initialize Agent

agent = Agent (
model=Gemini (id="gemini-1.5-flash", api key=gemini api key to use),
knowledge=knowledge base,
add references=True,
search knowledge=True,
show tool calls=True,
description=agent description,
expected output=expected output,
instructions=agent instructions,
markdown=True,
debug mode=True

)
Competitor Finder Agent

The search prompt guides the agent through a systematic process of identifying top
competitors within a specified industry and analyzing their products, market position, and key
strengths. This ensures that the retrieved data is relevant and presented in an organized
manner.

search prompt = f"""
1. Use search exa to find top competitors in the {industry} industry
2. For each competitor found, use exa answer to understand:
- Their main products/services
- Market position
- Key strengths
3. Present the findings in a clear, structured format

mmon



The competitor agent is built using the Gemini model, integrated with ExaTools for real-time

search. It retrieves competitor insights through tool calls and structures the findings for clear
interpretation.
competitor agent = Agent (
model=Gemini (
id="gemini-1.5-flash",
apli key=st.session state.gemini api key
) 14
tools=[ExaTools (
apli key=st.session state.exa api key,
category="company",
text length 1imit=1000,
)1y
tool call limit=5,
show tool calls=True,
description="You are a competitive analysis expert. Your task is to find
and analyze relevant competitors.",
markdown=True,
debug mode=True)

Data Preparation

This section outlines the steps taken to transform raw customer support interactions into
structured conversational data optimized for retrieval and analysis.

Dataset Struecture

The dataset consists of 2,811,774 rows and 7 columns, structured in CSV format. Each row
represents an individual tweet, with attributes such as tweet IDs, author IDs, timestamps, and
text.

Key data transformations include data types (e.g., user IDs) into numerical formats to optimize
storage and processing efficiency.



tweet id

0 1
1 2
2 3
3 4
4 5
5 6
6 8
7 11
8 12
9 15

author _id

sprintcare

115712

115712

sprintcare

115712

sprintcare

115712

sprintcare

115713

sprintcare

inbound

False

True

True

False

True

False

True

False

True

False

Data Processing

created at

Tue Oct 31 22:10:47 +0000
2017

Tue Oct 31 22:11:45 +0000
2017

Tue Oct 31 22:08:27 +0000
2017

Tue Oct 31 21:54:49 +0000
2017

Tue Oct 31 21:49:35 +0000
2017

Tue Oct 31 21:46:24 +0000
2017

Tue Oct 31 21:45:10 +0000
2017

Tue Oct 31 22:10:35 +0000
2017

Tue Oct 31 22:04:47 +0000
2017

Tue Oct 31 20:03:31 +0000
2017

text
@115712 I understand. | would like to assist y...

@sprintcare and how do you propose we do
that

@sprintcare | have sent several private messag...

@115712 Please send us a Private Message so
th...

@sprintcare | did.

@115712 Can you please send us a private
messa...

@sprintcare is the worst customer service
@115713 This is saddening to hear. Please

shoo...

@sprintcare You gonna magically change your
co...

@115713 We understand your concerns and
we'd [...

response_tweet_id

2

NaN

1

3

4

57

9,6,10

NaN

11,1314

12

in_response_to_tweet _id

3.0

1.0

4.0

50

6.0

8.0

NaN

12.0

15.0

16.0

To extract meaningful conversations, an Apache Spark job filters inbound tweets, reconstructs

reply chains, and organizes complete conversations. These are stored in Parquet format for

efficient retrieval.

Starting Tweet Selection Logic

The system identifies potential conversation starting points using the following criteria:

e Inbound Tweets Only: Tweets must be marked as "inbound" (i.e., directed to a

company support account).

e Not a Reply: The tweet must not be a response to another tweet
(in_response_to_tweet_idis NULL).

e Random Sampling for Efficiency: A subset of tweets (e.g., 10,000) is randomly

selected to form the conversation dataset, ensuring reproducibility by using a fixed

random seed.

Reply Chain Construction

Once starting tweets are selected, the full conversation thread is reconstructed using these

steps:

1. Follow Response Links: The system recursively follows response_tweet_id values

to gather replies.



Sort by Timestamp: The collected tweets are sorted chronologically using the

created_at field to maintain conversation flow.

Store as Conversation Objects: The reconstructed threads are stored as structured

conversation objects for downstream processing

Example of a Retrieved Reply Chain

The screenshot below showcases an example of a reconstructed reply chain. Each conversation

begins with an inbound customer query, followed by responses from the company or other

users.

2640273

2640272

2640271

2640268

2640269

2640270

tweet_id

2812607

2812606

2812604

2812602

2812603

2812605

author_id

784256

AppleSupport

784256

AppleSupport

784256

AppleSupport

inbound

True

False

True

False

True

False

created_at

2017-11-27
01:12:40+00:00

2017-11-27
01:20:00+00:00

2017-11-27
01:23:34+00:00

2017-11-27
01:32:50+00:00

2017-11-27
01:33:21+00:00

2017-11-27
01:47:00+00:00

text response_tweet_id

@AppleSupport | am TRYING to download
apps wit...

@784256 We want to help! What device
are you u...

@AppleSupport iPhone 8+. It isn't saying
aner..

@784256 How many bars of signal
strength do yo...

@AppleSupport Right now | have 3/4 on
LTE

@784256 Perfect. We'd like to investigate
furt...

in_response_to_tweet_id

[2812606] NaN
[2812604] 2812607.0
[2812602] 2812606.0
[2812603] 2812604.0
[2812605] 2812602.0

NaN 2812603.0

The table below represents the final structured format of the customer support conversations

before embedding generation. Each row corresponds to a reconstructed conversation, uniquely

identified by a conversation_id. The table includes key metadata such as start_time and

end_time to indicate the duration of the conversation, along with number_of turns, which

quantifies the number of exchanges. Additionally, the tweets and tweet_ids columns aggregate

all messages within the conversation thread, preserving the full interaction history.

conversation_id

723457¢6-caab-4156-983d-
76e9a62faf20

138a4725-55c0-4636-b68d-
76495ce0a85d

9877f91a-b1b7-43a7-bbf5-
bb6320bfe4ca

3f04444d-7f49-4278-ad67-
06337585195

eb519b2d-b73f-47ad-a434-
431abf2f4e3b

start_time

2017-11-27
01:14:51+00:00

2017-10-06
20:13:45+00:00

2017-11-22
22:37:00+00:00

2017-10-11
05:26:07+00:00

2017-11-19
19:55:53+00:00

end_time number of turns
2017-11-27 2
01:46:29+00:00
2017-10-13 5
16:51:33+00:00
2017-11-22 5
22:41:20+00:00
2017-10-11 5
08:28:47+00:00
2017-11-19 5
20:02:30+00:00

tweets

[{'tweet_id": 2812638,
‘author_id" '142760', ...
[{"tweet_id": 1084025,
‘author_id" '118189', ...
[{'tweet_id": 656755,
‘author_id": '276284', ...
[{'tweet_id": 728827,
‘author_id": '294581", ...

[{'tweet_id": 2698968,
‘author_id" '758288, ...

tweet_ids

[2812638, 2812636, 2812637,
2812639]

[1084025, 1084022, 1084024,
1084023, 1084021]

[656755, 656754]

[728827, 728826]

[2698968, 2698967]

This structured format enables efficient retrieval and analysis of customer interactions. The
dataset was then exported to Parquet format for optimized storage and retrieval.



Vector Embedding and Storage

To facilitate efficient retrieval and clustering, each reconstructed conversation is transformed
into a high-dimensional vector representation using Gemini’s text-embedding-004 model. The
embedding model generates 768-dimensional vectors. These vector representations are then
stored in PgVector. The task type was set to "CLUSTERING", enabling the system to group
similar conversations based on their contextual meaning.

Software Engineering Best Practices

Docker Containers — Environment Consistency and Scalability

Docker was used to containerize the application, ensuring a consistent runtime environment
across different systems. It also hosts PostgreSQL with the pgvector extension, enabling
scalable and efficient vector search capabilities.

run_pgvector.sh
#!/bin/bash

docker run -d -e POSTGRES DB=ai -e POSTGRES USER=ai -e

POSTGRES PASSWORD=ai -e PGDATA=/var/lib/postgresql/data/pgdata -v
pgvolume:/var/lib/postgresgl/data -p 5532:5432 --name pgvector
agnohqg/pgvector:16

Q Search

@ Containers .
Containers g feedback @

@

- RS View all your running containers and applications. Learn more (7

6  Volumes

4 Builds Container CPU usage Container memory usage Show charts

0.00% / 1600% (16 CPUs available) 50.19MB / 7.4GB

®  Docker Hub

& Docker Scout

. Q Search [[D [ Only show running containers

&» Extensions

Name Container ID Image Port(s) CPU (%) Last started Actions
° pgvector 952ffc22ba59 agnohq/pgvector:16 5532:5432 (7 0% 7 hours ago [ ] H W
Showing 1 item
& Engine runnin 9 (T RAM 1.69 GB CPU 0.06% Disk: 5.15 GB used (limit 1006.85 GB) >_ Terminal (@ New version available

Dockerfile

FROM python:3.11-slim



WORKDIR /app

COPY

RUN pip3 install -r requirements.txt

EXPOSE 8501

HEALTHCHECK CMD curl --fail http://localhost:8501/ stcore/health
ENTRYPOINT ["streamlit", "run", "main.py", "--server.port=8501",
"—-—server.address=0.0.0.0"]

UV - Project Management

UV was used for package and project management, handling dependencies efficiently with a
universal lockfile. It provides a fast and streamlined alternative to traditional Python package
managers, ensuring consistency and performance in project environments.

pyproject.toml

[project]

name = "ucl-rag-mcp-ai-competitor-intelligence-tool"

version = "0.1.0"

description = "Add your description here"

readme = "README.md"

requires-python = ">=3.11"

dependencies = [
"agno>=1.2.5",
"exa-py==1.7.1",
"google-genai==1.8.0",
"pgvector>=0.4.0",
"psycopg2>=2.9.10",
"pyarrow>=19.0.1",
"python-dotenv>=1.1.0",
"ragas>=0.2.14",
"sglalchemy>=2.0.40",
"streamlit==1.41.1",

Environment Files - Secure credentials management

Environment files (.env) were used for securely managing sensitive credentials and
configuration variables. This ensures separation of secrets from code, enhancing security and
simplifying deployment across different environments.

example .env file (sample)

GEMINI API KEY="xxxxxxx"

DB URL="postgresqgl+psycopg?://xxxx:xxxxx@localhost:5532/xxxxx"
TABLE NAME="name of your table"

CSV_FILE PATH="xxxxx"



EXA API KEY="xxxxx"
OPENAI API KEY="xxxx"

Logging - Reliability

Detailed logs were maintained to track every detail, revisit past system activities, and diagnose

why certain components may not be functioning properly.

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

S R R R R R R R R R R R METRICS 4 o otk bbb b o ot ok b b o o b ko oo
* Tokens: input=2961, output=139, total=3100

* Time: 1.3519s

* Tokens per second: 102.8166 tokens/s

* Time to first token: 0.2398s

ok otk ook ok R R R kR ok kR R R Rk METRICS ok ook ok oo ok oo o bbb b ko b ok oo ook ko ook ok

- -- Google Response Stream End
Added 4 Messages to AgentMemory

Added AgentRun to AgentMemory

Logging Agent Run

e 3k e e e b ke ke ok ok ok ok e e ek ok ok ok ok ok e e kokok ok ok ok ko kokokok ok ok k. Agent Run End: Cd736818’df81'4489'33f5'99f4cE65f6c2 3 e e e b ke ok ok ok o e e b ek ok ok ok ok sk e e kokok ok ok ok ok sk kokokok ok
Function: search_exa registered with exa

Function: get_contents registered with exa

Function: find_similar registered with exa

Function: exa_answer registered with exa

3 3k e e e ode bk ok ok o o e e e ke ok ok ok ok sk e e ok ok ok ok ok i ookl ok ok ok ok k kok Agent ID: d35dbafa-93c2’4b95'ab91'b529689667d6 ek ok ok o ok e e e e ke ke ok ok ok e e e ke ek ok ok ok ok sk e e ok ok ok ok ok kol lkokok ok

3 3 e e e de bk ok ok ok o e e e ke ok ok ok ok ok e ekl ok ok ok ok ok sk kokokokok ok ok ok SeSSiDn ID: 334C919f'1502'4f9b‘ab36’67b24cls7342 e 2k 3 o e e b e ke ok ok ok ok e e e ke ke ok ok ok ok e kol ok ok ok ok ok kool ok ok ok ok

kR kR Rk Agont Run Start: 7ad@b2a5-ebfb-4a61-b8b3-25bFF3302deb *Hkkkkkkkkkkkkkhhk ko kkkhd Ak kK

Processing tools for model

Included function search_exa from exa

Included function get_contents from exa

Included function find_similar from exa

Included function exa_answer from exa

—————————————————————————————————————————————————— Google Response Stream Start --------------ccmmooooooooceooooooooo

ffffffffffffffffffffffffffffffffffffffffffffffffffff Model: gemini-1.5-flash ---------ccccoccccocccccccccccocccocccoceee o
system




GIT - version control system

Git was used to track code changes and maintain version history.
Commits

¥ main - 2 All users ~ B All time ~
-0- Commits on Mar 30, 2025

moved docker command to appropriate file

@ pratha mmitt

spark sampler made

@ prathamskk committ

added dockerfile
@ prathams

dc4das3

added competitor finder

@ rrathams

2b4216b

init =

@ prathams

Evaluation

This section evaluates the performance, effectiveness, scalability, maintainability, and
limitations of the developed Al-Powered Competitor Intelligence Tool, reflecting on the
challenges encountered and lessons learned during the project.

Performance and Effectiveness

The system's processing speed was satisfactory, allowing for efficient operation and analysis.
The Customer Interaction Analysis Agent consistently provided accurate and valuable insights
by effectively retrieving and processing pertinent information. This proved to be a valuable
asset in understanding customer interactions and improving overall customer experience.

However, the Competitor Finder Agent's performance was less consistent. While it did provide
some useful competitor intelligence, its unreliability and tendency to produce inconsistent
results detracted from its overall effectiveness and limited the tool's overall value to the



business. This inconsistency made it challenging to rely solely on the Competitor Finder Agent
for accurate and comprehensive competitor analysis, potentially hindering strategic

decision-making and competitive positioning.
RAG Pipeline Evaluation (RAGAS)

The RAG pipeline of the Customer Interaction Analysis agent was evaluated using the ragas
library. Key retrieval metrics, context_precision and context_recall, were calculated using
evaluation questions based on the Twitter conversation data.

Context_precision measures if retrieved information was relevant to the query. Context recall
measures if all relevant information was retrieved.

evaluation_data = {
"question”: [
"How does AppleSupport handle negative customer feedback on Twitter?",
“"What are the key aspects of AppleSupport's social media customer service?”,
"How does AppleSupport promote self-service options to customers?”,
1
“answer”: [
"Applesupport typically responds to negative feedback professionally and promptly on Twitter, often directing users to private channels for detailed support while acknouledging issues publicly.",
"AppleSupport's social media customer service focuses on prompt responses, professional tone, and directing users to appropriate support channels while maintaining brand voice consistency.”,
"AppleSupport promotes self-service through their support website, directing users to FAQs, knowledge base articles, and automated support options when appropriate.”,
1,
# Using real reference texts from the conversation data
"reference”: [
"""@731750 When I long press on my app I don't get the selection to delete them, the apps "shake” but no red lines pop up to delete any of the apps
@AppleSupport We'd be happy to see what's causing you to be unable to delete those apps. Let's start by restarting the iPhone and see if that helps at all.
@731750 I've restarted and made my phone is updated to the latest version, still nothing.
@AppleSupport Do you have Restricitions turned on in Settiings > General?
©731750 yup! user error @ dont even know how that got turn on. Thanks for the help i really appreciate your responses.”"",

"""@369384 is it 2 much to ask for my devices to work properly? why am I buying products that are 1k, outdated 1 year & unusable in 52
@AppleSupport If you're having issues with your Apple products, we're here for you. Send us a DM with the details; we'll go from there.

©369384 #iphone #MacBookPro #ipad-air useless @apps & each update insures my dependable 3rd party apps don't work! 1/3 of memory is used by @ trash
@AppleSupport We want to take a closer look at this with you. Reach out via Direct Message using the following link: https://t.co/GDrqu22ypT""",

"""@405403 is there away to cancel preorder on iTunes from iPad or iPhone

@AppleSupport Great, question! You can only manage your pre-orders in iTunes on a Mac or PC: https://t.co/df4pjOiEq0

@405203 and u can't call in and cancel it I tried

@405403 u guys need to meke it where we can its BS

@AppleSupport You can definitely reach out to our iTunes Store support team here if you'd like: https://t.co/SDIe7UiyIN"""
1

1
}

evaluating: 100% | [ | G/ [02:41<00:00, 26.96s/it]

Evaluation Results:
{'context_precision': 0.8, 'context_recall': ©.94}

The evaluation yielded a context_precision score of 0.80 and a context_recall score of 0.94. The
former indicates that most retrieved information was relevant, and the latter shows the system

effectively found almost all necessary context.

These scores demonstrate a strong retrieval component, supporting the agent's effectiveness in
generating consistent and relevant analyses. While these metrics provide valuable insights into
retrieval quality, a comprehensive RAG evaluation could include metrics assessing generation
quality, such as faithfulness and answer_relevancy.



Scalability and Maintainability

Scalability: The system's containerized architecture and PgVector enable good scalability.
However, significant increases in data volume, user load, or companies analyzed would likely
encounter API, computational, and database bottlenecks. Scaling to diverse, real-time data
sources would require substantial re-architecture.

Maintainability: The project's maintainability is high due to its modular design and adherence
to best practices. Component replacement is straightforward, and dependency management and
environment consistency are simplified. However, maintaining complex prompts and consistent
agent behaviour, especially as models evolve, requires ongoing effort. Debugging agent
interactions or external API issues can also be complex.

Limitations and Future Improvements

Beyond the core data limitations (source, age, brand coverage), the system is limited by its focus
on text analysis (ignoring images/video) and the potential lack of nuance in understanding
sentiment or complex interactions within the RAG analysis. The Competitor Finder's reliance
solely on Exa Search also limits the breadth and depth of competitor discovery.

Potential future improvements include:

e Data Source Expansion: Integrating live data streams (e.g., Twitter API v2), other
social platforms (Reddit, LinkedIn), news articles, and review sites.

e Enhanced Competitor Finding: Supplementing or replacing Exa Search with other
data sources (e.g., industry databases, knowledge graphs) or employing different
discovery techniques.

e Richer Analysis Capabilities: Adding features like sentiment trend analysis, topic
modeling of support issues, automated SWOT analysis generation, and direct
competitor comparison dashboards.

e Robust Evaluation: Implementing comprehensive quantitative evaluation for retrieval
and generation quality.

e Improved User Interface: Developing more interactive visualizations and data
exploration features within the Streamlit dashboard.



Conclusion

This project successfully demonstrated the design and implementation of an Al-Powered
Competitor Intelligence Tool. By employing a dual-agent architecture built with modern Al and
data engineering techniques, the tool addresses the need for automated competitor
identification and in-depth customer interaction analysis. The Customer Interaction Analysis
Agent, leveraging a robust RAG pipeline with Gemini embeddings and PgVector on historical
Twitter data, proved effective, achieving strong retrieval performance as validated by RAGAS
evaluation metrics (0.80 precision, 0.94 recall). The Competitor Finder Agent, while functional
in leveraging the Exa Search API via MCP, showed performance inconsistencies, highlighting
challenges in relying solely on current search-based agentic approaches for this task.

The project showcased best practices in software engineering, including containerization with
Docker, efficient package management with UV, and secure configuration. While limitations
exist regarding data sources, data recency, and the reliability of the Competitor Finder, the
modular design provides a solid foundation for future enhancements. This work contributes a
practical example of applying agentic Al and RAG systems to the domain of competitive
intelligence, offering valuable insights and identifying key areas for continued development in
building more comprehensive and reliable Al analysis tools.

The full project code can be found at

https://github.com/prathamskk/ucl rag mcp_ai_competitor_intelligence_tool


https://github.com/prathamskk/ucl_rag_mcp_ai_competitor_intelligence_tool
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Fractal provided a structured framework for defining these key phases and associated
milestones, serving as a central tool for organizing the project's lifecycle and tracking its
progression.
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