

MSIN0166 DATA ENGINEERING
INDIVIDUAL ASSIGNMENT

AI
COMPETITOR
INTELLIGENCE TOOL___
Candidate No: MXLJ4

Word Count: 3955/4000

 2

Introduction..3
System Design and Architecture..3

Customer Interaction Analysis Agent:..5
Dataset Structure..6
Data Preparation.. 7
RAG Flow... 7
RAG Evaluation.. 8

Competitor Finder Agent..9
Function and Input... 9
Agentic Decision-Making...10
Leveraging Search API via MCP.. 10
Data Processing and Output...10

Implementation... 11
Dashboard Overview...11
Agents Implementation.. 12

Customer Interaction Analysis Agent... 13
Competitor Finder Agent... 15

Data Preparation.. 16
Dataset Structure.. 16
Data Processing.. 17

Starting Tweet Selection Logic..17
Reply Chain Construction...17

Example of a Retrieved Reply Chain...18
Vector Embedding and Storage... 19

Software Engineering Best Practices.. 19
Docker Containers – Environment Consistency and Scalability...................................19
UV - Project Management..20
Environment Files - Secure credentials management... 20
Logging - Reliability.. 21
GIT - version control system.. 22

Evaluation..22
Performance and Effectiveness.. 22
RAG Pipeline Evaluation (RAGAS)..23
Scalability and Maintainability.. 24
Limitations and Future Improvements... 24

Conclusion... 25

 3

Introduction
This report details the design and implementation of an AI-Powered Competitor Intelligence
Tool, which uses a dual-agent architecture to identify competitors and analyze customer
interactions. It leverages LLMs and agentic systems to automate competitor intelligence
gathering, addressing the need for efficient and insightful competitor analysis. The report also
covers the system design, implementation using Streamlit and Agno framework, data
preparation, adherence to software engineering best practices, and evaluation of the tool's
performance and scalability.

The full project code can be found at
https://github.com/prathamskk/ucl_rag_mcp_ai_competitor_intelligence_tool

System Design and Architecture

The AI Competitor Intelligence Tool is structured around a dual-agent architecture, comprising
the Competitor Finder Agent and the Customer Interaction Analysis Agent. This design
facilitates a modular approach, enabling focused functionality within each agent while allowing
for seamless integration. The Competitor Finder Agent is responsible for identifying and

https://github.com/prathamskk/ucl_rag_mcp_ai_competitor_intelligence_tool

 4

profiling competitors, while the Customer Interaction Analysis Agent focuses on in-depth
analysis of competitor behavior. This high-level architecture allows for scalability and
adaptability, enabling the system to incorporate additional data sources and analytical
capabilities in the future.

 5

Customer Interaction Analysis Agent:

This component is designed to provide in-depth analysis of a specified company's customer
interactions, leveraging publicly available Twitter data through a Retrieval-Augmented

 6

Generation (RAG) pipeline. The design incorporates both an offline data preparation phase and
an online, user-triggered analysis phase, as illustrated in the RAG + LLM diagram

Dataset Structure

The underlying dataset utilized for this preparation phase has the following characteristics:

Content: The source data is structured as a CSV file where each row represents an individual
tweet. Conversations are implicitly defined by reply chains, and it's noted that meaningful
conversations typically include at least one consumer request and one company response. The
inbound field is key for identifying company user IDs and distinguishing customer messages
from company replies.

Columns: The key columns include:

● tweet_id: A unique, anonymized identifier for the tweet, referenced by
response_tweet_id and in_response_to_tweet_id.

● author_id: A unique, anonymized user identifier. Mentions (@) within tweet text are
replaced with these anonymized IDs.

● inbound: A boolean flag indicating if the tweet is directed towards a company
providing support, useful for organizing conversational data.

● created_at: Timestamp indicating when the tweet was posted.
● text: The actual content of the tweet. Sensitive information like phone numbers or

email addresses has been masked (e.g., __email__).
● response_tweet_id: Comma-separated list of tweet IDs that are direct responses to

the current tweet.
● in_response_to_tweet_id: The ID of the tweet to which the current tweet is a

direct reply, if applicable.

Limitations:

● Data Source: Analysis is limited to Twitter data, which does not represent a
competitor's entire online presence.

● Brand Coverage: The analysis is limited to a select number of brands, based on the
available Twitter dataset.

● Data Age: The system uses historical Twitter data (from 2017), which may not reflect
current trends.

 7

Future Expansion: The system architecture is designed with modularity in mind. This
facilitates potential future enhancements, such as integrating live data streams from various
sources, including other social media platforms or news feeds, to provide more real-time and
comprehensive analysis.

Data Preparation

The data preparation phase begins with a substantial dataset comprising approximately 3
million tweets related to customer support interactions. A key challenge is transforming this
raw tweet data into meaningful conversation threads suitable for analysis. This is handled by an
Apache Spark job (sampler_spark.py). The logic identifies potential conversation starting
points by selecting tweets that are marked as inbound (directed to a support account) and are
not replies to other tweets (in_response_to_tweet_id is null). From this pool of initial
tweets, a representative sample (e.g., 10,000) is randomly selected (using a fixed random state
for reproducibility) to form the basis of the conversation dataset. For each selected starting
tweet, the system reconstructs the full conversation thread by recursively following the reply
chain using the response_tweet_id links, gathering all constituent tweets, and sorting them
chronologically by created_at. This process transforms the data structure from individual
tweets to complete conversation objects. These reconstructed conversations are then stored in
the efficient Parquet format (to_parquet file). Following this, an ingestion script
(ingest.py) processes these conversation objects. Crucially, each complete conversation is
passed through an embedding model, specifically, Gemini's text-embedding-004
(generating 768-dimension vectors), to capture its overall semantic meaning. These vector
embeddings representing entire conversations are then stored and indexed in a specialized
vector database – in this case, PgVector, an open-source extension for Postgres, which may
be containerized using Docker for ease of deployment and management. This offline process
ensures that the conversational data is readily available and optimized for fast retrieval during
the analysis phase.

RAG Flow

The RAG Flow is initiated online when a user interacts with the Streamlit dashboard, providing
a specific company name. The Customer Interaction Analysis Agent takes this input and
formulates a query aimed at analyzing that company's interactions based on the prepared data.
This query triggers a vector similarity search within the PgVector database to retrieve the
most relevant Twitter conversations corresponding to the query's semantic content. These

 8

retrieved conversations serve as the context or "retrieved knowledge." This context is then
dynamically combined with a carefully crafted prompt, which includes a description of the task,
specific instructions for the analysis, and the desired output format. This augmented prompt,
containing both the instructions and the relevant data, is sent to a Large Language Model
(LLM), Gemini, for generation. The LLM synthesizes the information to produce a detailed
analysis of the company's customer interactions based on the provided conversational evidence.
Finally, this generated analysis is presented back to the user through the Streamlit interface.

RAG Evaluation

To ensure the quality and reliability of this RAG pipeline, the design includes provisions for
Evaluation using frameworks like ragas. This allows for systematic assessment of the retrieval
relevance and the quality of the generated analysis, facilitating iterative improvements to the
prompt, retrieval strategy, or underlying models.

 9

Competitor Finder Agent

Function and Input

The Competitor Finder Agent serves as a crucial component within the system. Its primary
function is to identify and profile competitors operating within a specified industry. The agent
receives the industry name as its input from the user.

 10

Agentic Decision-Making

This agent operates with a degree of autonomy, making it an agentic entity. Based on its
internal reasoning and the provided industry name, it will independently decide when and
whether it needs to utilize external resources, such as the search API.

Leveraging Search API via MCP

When the agent determines that gathering external information is necessary, it leverages the
Exa Search API. This access is facilitated by the Model Context Protocol (MCP). MCP
functions as a standardized interface, enabling the agent, which is powered by Google's Gemini,
to seamlessly connect to and utilize the Exa Search API as a pre-built integration.

Data Processing and Output

Once the agent has retrieved search results using the Exa Search API, Google's Gemini takes
over to process the gathered information. It analyzes the data to identify the most relevant
competitors within the specified industry. Finally, the agent generates a report as its output,
which includes a list of identified competitors and potentially other pertinent information
gathered during the process.

 11

Implementation

Dashboard Overview

The project's dashboard was developed using Streamlit, an open-source Python framework
designed for creating and sharing data-driven web applications with minimal effort. The
dashboard's interface is organized into distinct sections:

Sidebar: Key Management:

The sidebar on the dashboard provides key management functionality, allowing users to input
and manage their API keys. It includes input fields for both "Gemini API Key" and "Exa API Key",
and masks the input for security purposes. Additionally, an "API Keys Loaded" indicator is
displayed to confirm that the keys have been successfully entered.

Tools Tab:

 12

The dashboard's main content area is organized into two separate tabs: "Customer Interaction
Analysis" and "Competitor Finder". This tabbed layout allows users to easily switch between the
two distinct analytical tools provided by the dashboard.

User Input:

Users have the ability to personalize their analysis by inputting specific parameters into the
designated fields provided on the dashboard. Subsequently, they can initiate the analysis
process by clicking the 'Analyze' button, which will then generate the corresponding results.

Analysis Results:

The results of the analysis are displayed in a text-based format on the dashboard. These
text-based results encompass a range of insights and observations that are directly derived
from the data.

Agents Implementation

The project utilizes Agno, an open-source platform for building, deploying, and monitoring AI
agentic systems, to facilitate the analysis and response generation. Agno's model-agnostic

 13

design allows for the integration of various large language models, providing flexibility and
scalability. The platform's capabilities, including memory management, external knowledge
integration, and tool utilization, are leveraged to create high-performing agents.

Customer Interaction Analysis Agent

The following prompt was crafted to define the agent’s role and core expertise, ensuring it
operates within the intended analytical scope.
Define agent description and instructions (keep existing ones)
agent_description = dedent("""\
 You are an expert analyst specializing in customer feedback and social
media engagement.
 Your expertise includes:
 - Analyzing customer interactions on platforms like Twitter.
 - Identifying patterns in how companies respond to positive and
negative feedback.
 - Assessing the effectiveness and professionalism of customer service
practices on social media.
 - Extracting key insights and providing structured reports based on
provided textual data.\
""")

This structured prompt was designed to guide the agent through a systematic process for
analyzing customer interactions and extracting insights. Below are its operational phases.
agent_instructions = dedent(f"""\
 1. Information Extraction Phase 🔍
 - Carefully read the provided references (covering year 2017).
 - Identify and extract specific examples related to how {company_name}
handles negative feedback and engages with the public on Twitter and
dedicated customer service practices on social media.
 - Pay close attention to the specific aspects outlined in the research
task (Public vs. Private Resolution, Sentiment Analysis, Actionable Steps,
Positive Reinforcement, Brand Voice Consistency, Social Media Support
Scope, Resolution Effectiveness Metrics, Self-Service Promotion,
Personalized Communication).

 2. Analysis Phase 📊
 - For each of the aspects mentioned above, analyze the extracted
information from the references.
 - Cross-reference information across different references if
applicable.
 - Identify patterns, trends, and specific examples that illustrate
{company_name}'s approach.
 - Note any inconsistencies or notable observations.

 3. Reporting Phase ✍
 - Structure your analysis based on the points mentioned in the
research task.

 14

 - For each point, provide a concise summary of your findings,
supported by direct evidence or examples from the references.
 - Maintain an objective and analytical tone.

 4. Quality Control ✓
 - Ensure that all conclusions are directly supported by the provided
references.
 - Verify the accuracy of the extracted information.
 - Ensure clarity and coherence in your report.\
 """)

The following prompts were designed to guide the AI agent in generating structured and
insightful analysis based on the retrieved data.
expected_output = dedent(f"""\
 Research Task: Based on the provided references (covering year 2017),
analyze how {company_name} handles negative feedback and engages with the
public on Twitter and dedicated customer service practices on social
media.

 Analyze their responses to negative comments, reviews, or complaints,
paying close attention to:

 * **Public vs. Private Resolution:** Determine the frequency with
which they publicly acknowledge issues versus offering private resolution,
according to the references.
 * **Sentiment Analysis (if your RAG can handle it):** Based on the
language used in their responses to negative feedback, assess the overall
professionalism and empathy.
 * **Actionable Steps:** Identify specific examples from the references
where {company_name} indicates steps being taken to address underlying
issues.
 * **Positive Reinforcement:** Analyze how they acknowledge and engage
with positive comments and praise, providing examples from the references.
 * **Brand Voice Consistency:** Describe the overall tone and voice
used in their public interactions, noting any inconsistencies observed in
the provided references.
 * **Social Media Support Scope:** Identify the range of customer
service inquiries addressed on social media, as evidenced in the
references.
 * **Resolution Effectiveness Metrics (if available in references):**
Based on the provided information, evaluate the clarity and effectiveness
of their resolution process, noting any metrics or indicators of success.
 * **Self-Service Promotion:** Identify instances where they direct
customers to FAQs or knowledge bases within the provided references.
 * **Personalized Communication:** Analyze the level of personalization
in their responses, providing examples from the references.

 15

 Instructions for RAG: Your analysis must be solely based on the
information provided in the references. For each point, provide direct
evidence or examples from the text to support your conclusions.
""")

This section outlines the initialization and configuration of the AI agent, including embedding,
vector database, and knowledge base integration. This implementation follows a traditional
Retrieval-Augmented Generation (RAG) approach, where a query is used to retrieve relevant
contextual data before being processed by an LLM for generation. The system integrates an
offline data preparation phase and an online retrieval process to ensure the most relevant
conversational data is available for analysis.
embedder = GeminiEmbedder(task_type="RETRIEVAL_QUERY",
api_key=_gemini_key)
vector_db = PgVector(table_name=_table_name, db_url=_db_url,
embedder=embedder, search_type=SearchType.hybrid)
knowledge_base = CSVKnowledgeBase(path=_csv_path, vector_db=vector_db ,
num_documents=10)

Initialize Agent
agent = Agent(
 model=Gemini(id="gemini-1.5-flash", api_key=gemini_api_key_to_use),
 knowledge=knowledge_base,
 add_references=True,
 search_knowledge=True,
 show_tool_calls=True,
 description=agent_description,
 expected_output=expected_output,
 instructions=agent_instructions,
 markdown=True,
 debug_mode=True
)

Competitor Finder Agent

The search prompt guides the agent through a systematic process of identifying top
competitors within a specified industry and analyzing their products, market position, and key
strengths. This ensures that the retrieved data is relevant and presented in an organized
manner.
search_prompt = f"""
1. Use search_exa to find top competitors in the {industry} industry
2. For each competitor found, use exa_answer to understand:
 - Their main products/services
 - Market position
 - Key strengths
3. Present the findings in a clear, structured format
"""

 16

The competitor agent is built using the Gemini model, integrated with ExaTools for real-time
search. It retrieves competitor insights through tool calls and structures the findings for clear
interpretation.
competitor_agent = Agent(
model=Gemini(
 id="gemini-1.5-flash",
 api_key=st.session_state.gemini_api_key
),
tools=[ExaTools(
 api_key=st.session_state.exa_api_key,
 category="company",
 text_length_limit=1000,
)],
tool_call_limit=5,
show_tool_calls=True,
description="You are a competitive analysis expert. Your task is to find
and analyze relevant competitors.",
markdown=True,
debug_mode=True)

Data Preparation

This section outlines the steps taken to transform raw customer support interactions into
structured conversational data optimized for retrieval and analysis.

Dataset Structure

The dataset consists of 2,811,774 rows and 7 columns, structured in CSV format. Each row
represents an individual tweet, with attributes such as tweet IDs, author IDs, timestamps, and
text.

Key data transformations include data types (e.g., user IDs) into numerical formats to optimize
storage and processing efficiency.

 17

Data Processing

To extract meaningful conversations, an Apache Spark job filters inbound tweets, reconstructs
reply chains, and organizes complete conversations. These are stored in Parquet format for
efficient retrieval.

Starting Tweet Selection Logic

The system identifies potential conversation starting points using the following criteria:

● Inbound Tweets Only: Tweets must be marked as "inbound" (i.e., directed to a
company support account).

● Not a Reply: The tweet must not be a response to another tweet
(in_response_to_tweet_id is NULL).

● Random Sampling for Efficiency: A subset of tweets (e.g., 10,000) is randomly
selected to form the conversation dataset, ensuring reproducibility by using a fixed
random seed.

Reply Chain Construction

Once starting tweets are selected, the full conversation thread is reconstructed using these
steps:

1. Follow Response Links: The system recursively follows response_tweet_id values
to gather replies.

 18

2. Sort by Timestamp: The collected tweets are sorted chronologically using the
created_at field to maintain conversation flow.

3. Store as Conversation Objects: The reconstructed threads are stored as structured
conversation objects for downstream processing

Example of a Retrieved Reply Chain

The screenshot below showcases an example of a reconstructed reply chain. Each conversation
begins with an inbound customer query, followed by responses from the company or other
users.

The table below represents the final structured format of the customer support conversations
before embedding generation. Each row corresponds to a reconstructed conversation, uniquely
identified by a conversation_id. The table includes key metadata such as start_time and
end_time to indicate the duration of the conversation, along with number_of_turns, which
quantifies the number of exchanges. Additionally, the tweets and tweet_ids columns aggregate
all messages within the conversation thread, preserving the full interaction history.

This structured format enables efficient retrieval and analysis of customer interactions. The
dataset was then exported to Parquet format for optimized storage and retrieval.

 19

Vector Embedding and Storage

To facilitate efficient retrieval and clustering, each reconstructed conversation is transformed
into a high-dimensional vector representation using Gemini’s text-embedding-004 model. The
embedding model generates 768-dimensional vectors. These vector representations are then
stored in PgVector. The task type was set to "CLUSTERING", enabling the system to group
similar conversations based on their contextual meaning.

Software Engineering Best Practices

Docker Containers – Environment Consistency and Scalability

Docker was used to containerize the application, ensuring a consistent runtime environment
across different systems. It also hosts PostgreSQL with the pgvector extension, enabling
scalable and efficient vector search capabilities.

run_pgvector.sh

#!/bin/bash

docker run -d -e POSTGRES_DB=ai -e POSTGRES_USER=ai -e

POSTGRES_PASSWORD=ai -e PGDATA=/var/lib/postgresql/data/pgdata -v

pgvolume:/var/lib/postgresql/data -p 5532:5432 --name pgvector

agnohq/pgvector:16

Dockerfile
FROM python:3.11-slim

 20

WORKDIR /app
COPY . .
RUN pip3 install -r requirements.txt
EXPOSE 8501
HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
ENTRYPOINT ["streamlit", "run", "main.py", "--server.port=8501",
"--server.address=0.0.0.0"]

UV - Project Management

UV was used for package and project management, handling dependencies efficiently with a
universal lockfile. It provides a fast and streamlined alternative to traditional Python package
managers, ensuring consistency and performance in project environments.

pyproject.toml
[project]
name = "ucl-rag-mcp-ai-competitor-intelligence-tool"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.11"
dependencies = [
 "agno>=1.2.5",
 "exa-py==1.7.1",
 "google-genai==1.8.0",
 "pgvector>=0.4.0",
 "psycopg2>=2.9.10",
 "pyarrow>=19.0.1",
 "python-dotenv>=1.1.0",
 "ragas>=0.2.14",
 "sqlalchemy>=2.0.40",
 "streamlit==1.41.1",
]

Environment Files - Secure credentials management

Environment files (.env) were used for securely managing sensitive credentials and
configuration variables. This ensures separation of secrets from code, enhancing security and
simplifying deployment across different environments.

example .env file (sample)
GEMINI_API_KEY="xxxxxxx"
DB_URL="postgresql+psycopg2://xxxx:xxxxx@localhost:5532/xxxxx"
TABLE_NAME="name_of_your_table"
CSV_FILE_PATH="xxxxx"

 21

EXA_API_KEY="xxxxx"
OPENAI_API_KEY="xxxx"

Logging - Reliability

Detailed logs were maintained to track every detail, revisit past system activities, and diagnose
why certain components may not be functioning properly.

 22

GIT - version control system

Git was used to track code changes and maintain version history.

Evaluation
This section evaluates the performance, effectiveness, scalability, maintainability, and
limitations of the developed AI-Powered Competitor Intelligence Tool, reflecting on the
challenges encountered and lessons learned during the project.

Performance and Effectiveness

The system's processing speed was satisfactory, allowing for efficient operation and analysis.
The Customer Interaction Analysis Agent consistently provided accurate and valuable insights
by effectively retrieving and processing pertinent information. This proved to be a valuable
asset in understanding customer interactions and improving overall customer experience.

However, the Competitor Finder Agent's performance was less consistent. While it did provide
some useful competitor intelligence, its unreliability and tendency to produce inconsistent
results detracted from its overall effectiveness and limited the tool's overall value to the

 23

business. This inconsistency made it challenging to rely solely on the Competitor Finder Agent
for accurate and comprehensive competitor analysis, potentially hindering strategic
decision-making and competitive positioning.

RAG Pipeline Evaluation (RAGAS)

The RAG pipeline of the Customer Interaction Analysis agent was evaluated using the ragas
library. Key retrieval metrics, context_precision and context_recall, were calculated using
evaluation questions based on the Twitter conversation data.

Context_precision measures if retrieved information was relevant to the query. Context_recall
measures if all relevant information was retrieved.

The evaluation yielded a context_precision score of 0.80 and a context_recall score of 0.94. The
former indicates that most retrieved information was relevant, and the latter shows the system
effectively found almost all necessary context.

These scores demonstrate a strong retrieval component, supporting the agent's effectiveness in
generating consistent and relevant analyses. While these metrics provide valuable insights into
retrieval quality, a comprehensive RAG evaluation could include metrics assessing generation
quality, such as faithfulness and answer_relevancy.

 24

Scalability and Maintainability

Scalability: The system's containerized architecture and PgVector enable good scalability.
However, significant increases in data volume, user load, or companies analyzed would likely
encounter API, computational, and database bottlenecks. Scaling to diverse, real-time data
sources would require substantial re-architecture.

Maintainability: The project's maintainability is high due to its modular design and adherence
to best practices. Component replacement is straightforward, and dependency management and
environment consistency are simplified. However, maintaining complex prompts and consistent
agent behaviour, especially as models evolve, requires ongoing effort. Debugging agent
interactions or external API issues can also be complex.

Limitations and Future Improvements

Beyond the core data limitations (source, age, brand coverage), the system is limited by its focus
on text analysis (ignoring images/video) and the potential lack of nuance in understanding
sentiment or complex interactions within the RAG analysis. The Competitor Finder's reliance
solely on Exa Search also limits the breadth and depth of competitor discovery.

Potential future improvements include:

● Data Source Expansion: Integrating live data streams (e.g., Twitter API v2), other
social platforms (Reddit, LinkedIn), news articles, and review sites.

● Enhanced Competitor Finding: Supplementing or replacing Exa Search with other
data sources (e.g., industry databases, knowledge graphs) or employing different
discovery techniques.

● Richer Analysis Capabilities: Adding features like sentiment trend analysis, topic
modeling of support issues, automated SWOT analysis generation, and direct
competitor comparison dashboards.

● Robust Evaluation: Implementing comprehensive quantitative evaluation for retrieval
and generation quality.

● Improved User Interface: Developing more interactive visualizations and data
exploration features within the Streamlit dashboard.

 25

Conclusion
This project successfully demonstrated the design and implementation of an AI-Powered
Competitor Intelligence Tool. By employing a dual-agent architecture built with modern AI and
data engineering techniques, the tool addresses the need for automated competitor
identification and in-depth customer interaction analysis. The Customer Interaction Analysis
Agent, leveraging a robust RAG pipeline with Gemini embeddings and PgVector on historical
Twitter data, proved effective, achieving strong retrieval performance as validated by RAGAS
evaluation metrics (0.80 precision, 0.94 recall). The Competitor Finder Agent, while functional
in leveraging the Exa Search API via MCP, showed performance inconsistencies, highlighting
challenges in relying solely on current search-based agentic approaches for this task.

The project showcased best practices in software engineering, including containerization with
Docker, efficient package management with UV, and secure configuration. While limitations
exist regarding data sources, data recency, and the reliability of the Competitor Finder, the
modular design provides a solid foundation for future enhancements. This work contributes a
practical example of applying agentic AI and RAG systems to the domain of competitive
intelligence, offering valuable insights and identifying key areas for continued development in
building more comprehensive and reliable AI analysis tools.

The full project code can be found at
https://github.com/prathamskk/ucl_rag_mcp_ai_competitor_intelligence_tool

https://github.com/prathamskk/ucl_rag_mcp_ai_competitor_intelligence_tool

 26

Appendix

Fractal provided a structured framework for defining these key phases and associated
milestones, serving as a central tool for organizing the project's lifecycle and tracking its
progression.

	AICOMPETITOR INTELLIGENCE TOOL___
	Introduction
	System Design and Architecture
	Customer Interaction Analysis Agent:
	Dataset Structure
	Data Preparation
	RAG Flow
	RAG Evaluation

	Competitor Finder Agent
	Function and Input
	Agentic Decision-Making
	Leveraging Search API via MCP
	Data Processing and Output

	Implementation
	Dashboard Overview
	Agents Implementation
	Customer Interaction Analysis Agent
	Competitor Finder Agent

	Data Preparation
	Dataset Structure
	Data Processing
	Starting Tweet Selection Logic
	Reply Chain Construction
	Example of a Retrieved Reply Chain

	Vector Embedding and Storage

	Software Engineering Best Practices
	Docker Containers – Environment Consistency and Scalability
	
	UV - Project Management
	Environment Files - Secure credentials management
	Logging - Reliability
	GIT - version control system

	Evaluation
	Performance and Effectiveness
	RAG Pipeline Evaluation (RAGAS)
	Scalability and Maintainability
	Limitations and Future Improvements

	Conclusion
	Appendix

